New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Sympathetic nervous system

The sympathetic nervous system (SNS) is part of the autonomic nervous system (ANS), which also includes the parasympathetic nervous system (PNS). The sympathetic nervous system activates what is often termed the fight or flight response.

Like other parts of the nervous system, the sympathetic nervous system operates through a series of interconnected neurons. Sympathetic neurons are frequently considered part of the peripheral nervous system (PNS), although there are many that lie within the central nervous system (CNS). Sympathetic neurons of the spinal cord (which is part of the CNS) communicate with peripheral sympathetic neurons via a series of sympathetic ganglia. Within the ganglia, spinal cord sympathetic neurons join peripheral sympathetic neurons through chemical synapses. Spinal cord sympathetic neurons are therefore called presynaptic (or preganglionic) neurons, while peripheral sympathetic neurons are called postsynaptic (or postganglionic) neurons.

At synapses within the sympathetic ganglia, preganglionic sympathetic neurons release acetylcholine, a chemical messenger that binds and activates nicotinic acetylcholine receptors on postganglionic neurons. In response to this stimulus, postganglionic neurons principally release noradrenaline (norepinephrine). Prolonged activation can elicit the release of adrenaline from the adrenal medulla.

Once released, noradrenaline and adrenaline bind adrenergic receptors on peripheral tissues. Binding to adrenergic receptors causes the effects seen during the fight-or-flight response. These include pupil dilation, increased sweating, increased heart rate, and increased blood pressure.

Sympathetic nerves originate inside the vertebral column, toward the middle of the spinal cord in the intermediolateral cell column (or lateral horn), beginning at the first thoracic segment of the spinal cord and are thought to extend to the second or third lumbar segments. Because its cells begin in the thoracic and lumbar regions of the spinal cord, the CNS is said to have a thoracolumbar outflow. Axons of these nerves leave the spinal cord in the ventral branches (rami) of the spinal nerves, and then separate out as 'white rami' (so called from the shiny white sheaths of myelin around each axon) which connect to two chain ganglia extending alongside the vertebral column on the left and right. These elongated ganglia are also known as paravertebral ganglia or sympathetic trunks. In these hubs, connections (synapses) are made which then distribute the nerves to major organs, glands, and other parts of the body.

Related Stories
 


Health & Medicine News

November 20, 2025

Researchers uncovered a powerful weakness in lung cancer by shutting down a protein that helps tumors survive stress. When this protein, FSP1, was blocked, lung tumors in mice shrank dramatically, with many cancer cells essentially triggering their ...
Researchers have recreated a miniature human bone marrow system that mirrors the real structure found inside our bones. The model includes the full mix of cells and signals needed for blood production and even maintains this process for weeks. It ...
A nationwide analysis has uncovered how sprawling fossil fuel infrastructure sits surprisingly close to millions of American homes. The research shows that 46.6 million people live within about a mile of wells, refineries, pipelines, storage sites, ...
Researchers discovered a way to keep T cells from wearing out during the fight against cancer, and the approach could make immune-based treatments far more powerful. They found that tumors use a particular molecular signal to weaken T cells, and ...
Scientists have developed a new molecule that breaks down beta-amyloid plaques by binding to excess copper in the brain. The treatment restored memory and reduced inflammation in rats, while also proving non-toxic and able to cross the blood–brain ...
Researchers discovered that chronic inflammation fundamentally remodels the bone marrow, allowing mutated stem cell clones to quietly gain dominance with age. Reprogrammed stromal cells and interferon-responsive T cells create a self-sustaining ...
A specially engineered antibody that can infiltrate kidney cysts has shown the ability to block key growth signals driving polycystic kidney disease. Early mouse studies suggest it may halt or even reverse cyst expansion without harming healthy ...
Microplastics—tiny particles now found in food, water, air, and even human tissues—may directly accelerate artery-clogging disease, and new research shows the danger may be far greater for males. In mice, environmentally realistic doses of ...
Scientists are uncovering how GLP-1 drugs like Ozempic and Wegovy act on brain regions that control hunger, nausea, pleasure-based eating, and thirst. These discoveries may help create treatments that keep the benefits of weight loss while reducing ...
Rutgers scientists found that metformin can blunt many of the metabolic and cardiovascular improvements normally produced by exercise. Participants who took the drug saw reduced gains in fitness, blood vessel function, and glucose control. The ...
Chronic kidney disease has surged to nearly 800 million cases and is now among the top causes of death worldwide. The condition is heavily linked to diabetes, hypertension, and obesity, and often goes unnoticed until late stages. Many countries lack ...
Scientists discovered that alcohol activates a sugar-producing pathway in the body, creating fructose that may reinforce addictive drinking. The enzyme responsible, KHK, appears to drive both alcohol cravings and liver injury. When this enzyme was ...

Latest Headlines

updated 12:56 pm ET