New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Doppler radar

Doppler radar uses the Doppler effect to measure the radial velocity of targets in the antenna's directional beam. The Doppler effect shifts the received frequency up or down based on the radial velocity of target (closing or opening) in the beam, allowing for the direct and highly accurate measurement of target velocity. A Doppler radar is a radar that produces a velocity measurement as one of its outputs. Doppler radars may be Coherent Pulsed, Continuous Wave, or Frequency Modulated. A continuous wave (CW) doppler radar is a special case that only provides a velocity output. Early doppler radars were CW, and it quickly led to the development of Frequency Modulated (FM-CW) radar, which sweeps the transmitter frequency to encode and determine range. The CW and FM-CW radars can only process one target normally, which limits their use. With the advent of digital techniques Pulse-Doppler (PD) radars were introduced, and doppler processors for coherent pulse radars were developed at the same time.

The advantage of combining doppler processing to pulse radars is to provide accurate velocity information. This velocity is called Range-Rate. It describes the rate that a target moves towards or away from the radar. A target with no range-rate reflects a frequency near the transmitter frequency, and cannot be detected. The classic zero doppler target is one which is on a heading that is tangential to the radar antenna beam. Basically, any target that is heading 90 degrees in relation to the antenna beam cannot be detected.

Related Stories
 


Earth & Climate News

January 26, 2026

After analyzing 40 years of tree records across the Andes and Amazon, researchers found that climate change is reshaping tropical forests in uneven ways. Some regions are steadily losing tree species, especially where conditions are hotter and ...
A new building material developed by engineers at Worcester Polytechnic Institute could change how the world builds. Made using an enzyme that turns carbon dioxide into solid minerals, the material cures in hours and locks away carbon instead of ...
Mountain regions around the world are heating up faster than the lands below them, triggering dramatic shifts in snow, rain, and water supply that could affect over a billion people. A major global review finds that rising temperatures are turning ...
Plastic-coated fertilizers used on farms are emerging as a major but hidden source of ocean microplastics. A new study found that only a tiny fraction reaches beaches through rivers, while direct drainage from fields to the sea sends far more ...
Tiny plastic particles drifting through the oceans may be quietly weakening one of Earth’s most powerful climate defenses. New research suggests microplastics are disrupting marine life that helps oceans absorb carbon dioxide, while also releasing ...
New research shows tropical forests can recover twice as fast after deforestation when their soils contain enough nitrogen. Scientists followed forest regrowth across Central America for decades and found that nitrogen plays a decisive role in how ...
In the rapidly disappearing Atlantic Forest, mosquitoes are adapting to a human-dominated landscape. Scientists found that many species now prefer feeding on people rather than the forest’s diverse wildlife. This behavior dramatically raises the ...
For thousands of years, wildfires on Alaska’s North Slope were rare. That changed sharply in the 20th century, when warming temperatures dried soils and fueled the spread of shrubs, setting the stage for intense fires. Peat cores and satellite ...
Scientists have identified a newly recognized threat lurking beneath the ocean’s surface: sudden episodes of underwater darkness that can last days or even months. Caused by storms, sediment runoff, algae blooms, and murky water, these “marine ...
Earth’s oceans reached their highest heat levels on record in 2025, absorbing vast amounts of excess energy from the atmosphere. This steady buildup has accelerated since the 1990s and is now driving stronger storms, heavier rainfall, and rising ...
Honey bees can normally keep their hives perfectly climate-controlled, but extreme heat can overwhelm their defenses. During a scorching Arizona summer, researchers found that high temperatures caused damaging temperature fluctuations inside hives, ...
Scientists tracking Earth’s water from space discovered that El Niño and La Niña are synchronizing floods and droughts across continents. When these climate cycles intensify, far-apart regions can become unusually wet or dangerously dry at the ...

Latest Headlines

updated 12:56 pm ET