Featured Research

from universities, journals, and other organizations

Subtle Biotic Changes Have Big Environmental Impact

Date:
July 11, 1997
Source:
University Of Wisconsin-Madison
Summary:
A new finding, reported by researchers from UW-Madison in this week's (July 11) edition of the journal Science, is the first to show that only slight rearrangement of an intact ecosystem's food web can directly influence the atmosphere.

MADISON - By changing the composition of fish populations in a lake, scientists have found a switch by which the flow of carbon between lakes and the atmosphere can be turned on, off, or reversed.

The finding, reported by researchers from the University of Wisconsin-Madison in this week's (July 11) edition of the journal Science, is the first to show that only slight rearrangement of an intact ecosystem's food web can directly influence the atmosphere.

The discovery is important because it demonstrates that single, seemingly subtle changes in ecosystems can have far-reaching consequences, and are capable of disrupting the fundamental biogeochemical processes of the Earth.

"Linkages in ecosystems are both stronger and stranger than we imagined," said Stephen R. Carpenter, a UW-Madison limnologist who, with fellow limnologists Daniel E. Schindler and James F. Kitchell, authored the report. "Biological processes have powerful feedbacks to processes that are normally thought to be purely physical or chemical in nature."

While lakes occupy a very small area of the planet's surface, the discovery that simple biotic change is capable of altering the exchange of carbon between the atmosphere and the Earth's surface raises questions of global significance, said Carpenter.

"To what extent could fertilization of the oceans and alteration of oceanic food webs affect global carbon cycles? In fact, runoff from land is now enriching coastal oceans to unprecedented levels, and industrial fishing is causing massive changes in marine food webs. So the global experiment is underway," said Carpenter.

Carbon, an essential nutrient in lakes, typically flows from the land in the formof dead leaves and other organic matter that accumulates and decays underwater. Usually, these processes lead to a surplus of carbon dioxide in lakes. Excess carbon in a lake is released as a gas, carbon dioxide, to the atmosphere.

When there is a deficit of carbon dioxide, however, lakes draw the gas directly from the atmosphere.

Working on an isolated, undeveloped suite of lakes in Michigan's Upper Peninsula, the Wisconsin scientists were able to manipulate the flow of carbon between an entire, intact ecosystem and the atmosphere by placing either minnows or bass at the apex of the lake food web.

Bass, by preying on the minnows that consume algae-grazing zooplankton, effectively increased the flow of carbon to the atmosphere by freeing zooplankton from their predators. The booming zooplankton populations grazed the algae to the point where they were no longer a force to use the lake's excess carbon. The lakes, in effect, became pumps, expelling unused carbon to the atmosphere.

In lakes dominated by minnows, whose menus include algae-eating zooplankton, burgeoning algae populations and their photosynthetic requirements resulted in a carbon deficit, and the lakes become carbon sinks, drawing carbon directly from the atmosphere.

"This effect of fishes on gas exchange results from the changes in aquatic food webs that are regulated by the species of fish present in a particular lake," said Schindler.

The changes in lakes, Schindler emphasized, will not have implications for global climate. However, the new understanding of the processes that alter the exchange of carbon dioxide between lakes and the atmosphere can be generalized to other ecosystems such as oceans.

"Although the consequences ... are much less known for marine systems than for lakes, we should expect that the ecological responses to exploitation are similar in many ways," Schindler said.

The work done by the Wisconsin scientists was funded by the National Science Foundation and conducted under the auspices of the UW-Madison Center for Limnology.

###- Terry Devitt (608) 262-8282, trdevitt@facstaff.wisc.edu

(Editor's note: Limnologist Daniel E. Schindler is in transition from the University of Wisconsin-Madison to the University of Washington in Seattle. He can best be reached through the University of Washington's Office of News and Information at(206) 543-2580.)


Story Source:

The above story is based on materials provided by University Of Wisconsin-Madison. Note: Materials may be edited for content and length.


Cite This Page:

University Of Wisconsin-Madison. "Subtle Biotic Changes Have Big Environmental Impact." ScienceDaily. ScienceDaily, 11 July 1997. <www.sciencedaily.com/releases/1997/07/970711093659.htm>.
University Of Wisconsin-Madison. (1997, July 11). Subtle Biotic Changes Have Big Environmental Impact. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/1997/07/970711093659.htm
University Of Wisconsin-Madison. "Subtle Biotic Changes Have Big Environmental Impact." ScienceDaily. www.sciencedaily.com/releases/1997/07/970711093659.htm (accessed July 25, 2014).

Share This




More Earth & Climate News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Bill Gates: Health, Agriculture Key to Africa's Development

Bill Gates: Health, Agriculture Key to Africa's Development

AFP (July 24, 2014) Health and agriculture development are key if African countries are to overcome poverty and grow, US software billionaire Bill Gates said Thursday, as he received an honourary degree in Ethiopia. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Higgins Breaks Record at Mt. Washington

Higgins Breaks Record at Mt. Washington

Driving Sports (July 24, 2014) Subaru Rally Team USA drivers David Higgins and Travis Pastrana face off against a global contingent of racers at the annual Mt. Washington Hillclimb in New Hampshire. Includes exclusive in-car footage from Higgins' record attempt. Video provided by Driving Sports
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins