Featured Research

from universities, journals, and other organizations

Computer Simulation Of Matches And Trees Can Be Used To Predict And Prevent Large Forest Fires, Cornell Geologists Say

Date:
September 18, 1998
Source:
Cornell University
Summary:
As small earthquakes can be omens of larger ones and landslides can be precursors to avalanches, Cornell University geologists have shown in a computer simulation that forest fires display the same natural behavior. Their findings, they believe, could be used to predict where large forest fires can occur -- and how to prevent them.

ITHACA, N.Y. -- As small earthquakes can be omens of larger ones andlandslides can be precursors to avalanches, Cornell University geologistshave shown in a computer simulation that forest fires display the samenatural behavior. Their findings, they believe, could be used to predictwhere large forest fires can occur -- and how to prevent them.

Related Articles


The researchers' findings appear in the latest issue of the journal Science (Sept. 18, 1998).

"What is surprising to me is that an event like a forest fire is so similarto other natural events," says Donald L. Turcotte, the M.M. UpsonProfessor of Engineering in the Cornell Department of Geology. "Andhumanity really plays a small role in these events."

Turcotte and his fellow researchers, Bruce D. Malamud, a Fulbright Scholarand visiting lecturer in geology at Cornell, and Gleb Morein, a Cornellgraduate student, built their computer model of forest fires and analyzeddata sets from a number of forests and wildfires from around the world,including Yellowstone National Park.

Until 1972 Yellowstone had a policy of suppressing forest fires. Thisresulted in a large accumulation of dead trees, undergrowth and very oldtrees that became perfect tinder for fires. The researchers contend thatthe large Yellowstone fire of 1988, which burned 800,000 acres, could havebeen prevented if the policy of letting smaller fires burn to completionhad been in place before 1972. The smaller fires would have eliminated theunderbrush and dead wood earlier, thus reducing the likelihood of a largefire, they say.

In analyzing how forest fires start and propagate, the researchers foundthat the frequency distribution of small and medium fires can be used toassess the risk of larger fires, as small tremors are routinely used toassess the risk of larger earthquakes.

Turcotte explains that for natural occurrences there is a return period forevents of different magnitudes. For example, meteorologists classifystorms as 5-year, 10-year, 50-year or 100-year. This is an example ofbehavior on the part of weather. "It's an interesting class of phenomena,"he says. "Small landslides build up to large landslides, and I supposethis model can be applied to something like the stock market, which alsoshows a degree of self-organized critical behavior."

To model forest fires, the scientists developed a computer grid of aforest, then simulated dropping a match. If the match landed on a tree,the tree and its neighbors would burn. If the match landed on an areawithout trees, no fire ensued. Where the grid was packed with trees, alarge fire ensued. The scientists say that the only previous applicationof this type of model was to study measles epidemics in isolatedpopulations.

The scientists ran the model under different scenarios of forest density.Interestingly, for each scenario, the researchers found a range of small tolarge fires and many more small fires than larger ones, which correlateswith the law of a fractal distribution. (Fractal distribution is themagnification of certain things, like the size of a fire, in proportion totheir original size.)

Large forest fires are dominant when the forest is densely populated. Thiswas demonstrated by the researchers when the computer grid was filled withtrees: The fires spanned the grid. This is what happened in YellowstoneNational Park in 1988. The scientists say that forest-fire professionalsnow recognize that the best way to prevent the largest fires is to allowthe small and medium fires to burn.

The scientists found that actual forest fires have fractal distributionsover many orders of magnitude. However, the environmental- andhuman-related variables that affect the size of wildfires are many,including the proximity and type of combustible materials, weatherconditions and firefighting efforts to extinguish certain fires, theresearchers say.

"Despite these complexities, the predicition capability of the forest firemodel appears to be robust," says Turcotte.

The Science article is titled "Forest Fires: An Example of Self-OrganizedCritical Behavior." Funding for the research was provided by a grant fromthe National Aeronautics and Space Administration (NASA).


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "Computer Simulation Of Matches And Trees Can Be Used To Predict And Prevent Large Forest Fires, Cornell Geologists Say." ScienceDaily. ScienceDaily, 18 September 1998. <www.sciencedaily.com/releases/1998/09/980918070916.htm>.
Cornell University. (1998, September 18). Computer Simulation Of Matches And Trees Can Be Used To Predict And Prevent Large Forest Fires, Cornell Geologists Say. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/1998/09/980918070916.htm
Cornell University. "Computer Simulation Of Matches And Trees Can Be Used To Predict And Prevent Large Forest Fires, Cornell Geologists Say." ScienceDaily. www.sciencedaily.com/releases/1998/09/980918070916.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lava on Track to Hit Hawaii Market

Raw: Lava on Track to Hit Hawaii Market

AP (Dec. 19, 2014) Lava from an active volcano on Hawaii's Big Island slowed slightly but stayed on track to hit a shopping center in the small town of Pahoa. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins