Featured Research

from universities, journals, and other organizations

Agent Destroys Anthrax, Doesn't Hurt Animals Or The Environment

Date:
September 29, 1998
Source:
The University Of Michigan
Summary:
BCTP looks like skim milk. Laboratory rats gain weight when they eat it. Spray it on your lawn and the grass will thrive. But according to tests conducted by University of Michigan scientists, this seemingly benign material could be a potent weapon against anthrax---one of the deadliest bacteria on Earth.

SAN DIEGO---BCTP looks like skim milk. Laboratory rats gain weight when they eat it. Spray it on your lawn and the grass will thrive. But according to tests conducted by University of Michigan scientists, this seemingly benign material could be a potent weapon against anthrax---one of the deadliest bacteria on Earth.

In a presentation at the Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) on Sept. 26, Michael Hayes, research associate in the U-M Medical School, presented experimental evidence of BCTP's ability to destroy anthrax spores both in a culture dish and in mice exposed to anthrax through a skin incision. James R. Baker Jr., M.D., professor of internal medicine and director of the Center for Biologic Nanotechnology in the U-M Medical School, directed the research study.

BCTP was developed by D. Craig Wright, M.D., chief research scientist at Novavax, Inc.---a bio-pharmaceutical company in Columbia, Md.---and president of Novavax Biologics Division. According to Wright, the material is made of water, soybean oil, Triton X 100 detergent and the solvent tri-n-butyl phosphate.

"One of the most remarkable characteristics of this material is its ability to rapidly destroy a wide variety of dangerous bacteria and viruses, while remaining non-toxic to people, animals or the environment," Baker said.

BCTP's effectiveness against anthrax spores is especially significant, because they are so difficult to kill. "Spores are like freeze-dried bacteria," Baker explained. "Their tough outer coat is resistant to disinfectants, freezing, drought, virtually anything we can throw at them. Spores can survive in the environment for many years and still generate live bacteria when given the right combination of water, nutrients and temperature."

Concentrated doses of strong disinfectants like bleach or formaldehyde will kill anthrax spores, according to Baker. Unfortunately, they also are toxic to people and the environment, which makes them useless for decontaminating a person, a piece of land or equipment exposed to the bacteria.

Since the Persian Gulf War, military authorities have become increasingly concerned about the threat anthrax and other biological warfare agents pose both to our armed forces and civilian populations. "Anthrax is often fatal and easily dispersed through air or water," Baker said. "We know that countries hostile to the United States have developed strains of anthrax which are resistant to antibiotics and existing vaccines. To counter that threat, the Defense Advanced Research Projects Agency (DARPA), is testing several possible new weapons against these biologic agents---including BCTP."

"When properly formulated, the components in BCTP form an emulsion of tiny lipid droplets suspended in solvent," said Wright. "These lipids fuse with anthrax spores causing the spore to revert to its active bacterial state. During this process, which takes four to five hours, the spore's tough outer membrane changes allowing BCTP's solvent to strip away the exterior membrane. BCTP's detergent then degrades the spore's interior contents. In scanning electron microscope images, the spores appear to explode."

In his conference presentation, Hayes described how even low concentrations of BCTP killed more than 90 percent of virulent strains of Bacillus anthracis spores in a culture dish. "We observed sporicidal activity with dilutions as high as one part BCTP per 1,000 parts culture media," Hayes said.

To determine its toxicity to animals, U-M scientists fed large amounts of BCTP to laboratory rats and injected mice with the material subcutaneously. The animals gained weight, remained healthy and suffered no adverse effects.

To determine BCTP's effectiveness at treating animals exposed to anthrax spores, Baker's research team subcutaneously injected mice with Bacillus cereus---a closely related species of bacteria that can be safely handled in a university laboratory setting. Like B. anthracis, its lethal relative, B. cereus produces large, ulcerous areas of dead tissue if it penetrates the skin through a cut or injury. If untreated, these skin infections spread systemically, producing severe illness and death in 80 percent of the laboratory mice in the study.

"When we washed the animal's skin lesions with BCTP, the wounds began to heal," Baker said. Mice receiving BCTP either simultaneously with B. cereus spores or whose wounds were washed with BCTP an hour after exposure had a 95 percent reduction in lesion size. The death rate for mice receiving BCTP was only 20 percent.

"Rapid inactivation of anthrax bacteria and spores combined with low toxicity makes BCTP a promising candidate for use as a broad-spectrum, post-exposure decontamination agent," Baker said.

In future studies, Baker plans to evaluate BCTP's effectiveness against inhaled anthrax spores, as well as other bacteria and enveloped viruses. His research has been funded by DARPA's Unconventional Pathogen Countermeasures Program. The U-M and Novavax have filed a patent application covering BCTP's use as a decontamination agent for various anti-microbial applications. Baker is a member of the Novavax scientific advisory board, but has no significant financial interest in the company.


Story Source:

The above story is based on materials provided by The University Of Michigan. Note: Materials may be edited for content and length.


Cite This Page:

The University Of Michigan. "Agent Destroys Anthrax, Doesn't Hurt Animals Or The Environment." ScienceDaily. ScienceDaily, 29 September 1998. <www.sciencedaily.com/releases/1998/09/980929072558.htm>.
The University Of Michigan. (1998, September 29). Agent Destroys Anthrax, Doesn't Hurt Animals Or The Environment. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/1998/09/980929072558.htm
The University Of Michigan. "Agent Destroys Anthrax, Doesn't Hurt Animals Or The Environment." ScienceDaily. www.sciencedaily.com/releases/1998/09/980929072558.htm (accessed July 22, 2014).

Share This




More Plants & Animals News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
San Diego Zoo Welcomes New, Rare Rhino Calf

San Diego Zoo Welcomes New, Rare Rhino Calf

Reuters - US Online Video (July 21, 2014) An endangered black rhino baby is the newest resident at the San Diego Zoo. Sasha Salama reports. Video provided by Reuters
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins