Featured Research

from universities, journals, and other organizations

New "Restaurant" For Bacteria May Improve Pollution Clean-Up

Date:
February 5, 1999
Source:
American Chemical Society
Summary:
A new bioreactor system that serves up pollutants to "hungry" bacteria promises to clean up "unprecedented" levels of toxic organic chemicals classified as "priority pollutants" by the U.S. Environmental Protection Agency, according to Canadian researchers. The scientists envision its use in cleaning up contaminated sites and to get rid of old chemical supplies.

A new bioreactor system that serves up pollutants to "hungry" bacteria promises to clean up "unprecedented" levels of toxic organic chemicals classified as "priority pollutants" by the U.S. Environmental Protection Agency, according to Canadian researchers. The scientists envision its use in cleaning up contaminated sites and to get rid of old chemical supplies.

The development will be outlined in the Jan./Feb. print edition of the peer-reviewed journal Biotechnology Progress, published by the American Chemical Society (ACS), the world's largest scientific society. ACS Web publication of this paper was on Jan. 9.

The clean up takes place in two liquid phases. The first uses a solvent that the scientists say readily dissolves high concentrations of toxic chemicals such as benzene, toluene, and p-xylene (collectively referred to as BTX). These man-made chemicals are components of gasoline and also are used extensively in industrial processes. In the second phase, the BTX is fed to a Pseudomonas bacteria cultivated in water.

The pollutants are much more soluble in the solvent than in water, so a large amount of BTX can dissolve in the solvent phase of the two-phase bioreactor without leading to high concentrations in the water phase. This is beneficial because too much of the BTX can kill the bacteria. Since a strict equilibrium is maintained between the phases, BTX enters phase two only as fast as bacteria degrade what's already there. "The organisms themselves determine the rate at which the BTX gets fed to them," says the chemical engineer Andrew J. Daugulis, Ph.D., of Queen's University in Ontario. "They control the process. Therefore we have a very efficient and self-regulating means of destroying large quantities of (toxic chemicals)." The by-products are carbon dioxide and more bacteria.

To test their bioreactor, the researchers intentionally "spilled" BTX on soil. They say their solvent was able to recover more than 99% of the pollutants from the soil. When it was then put through the bioreactor, "the bacteria readily used up all of the BTX," according to Daugulis. "So we used the solvent again to recover another 'spill' and then sent it back to the bioreactor for BTX degradation. It worked as expected."

It is hoped that this reusable system might replace current clean-up procedures for some applications. Today's methods include spraying bacteria directly on contaminated sites, removing soil and washing it with large volumes of water, and incineration. All of these systems have major drawbacks. Because the new bioreactor is still in early laboratory testing stages, it is not yet clear what complications might occur during large-scale use.

The researchers think their system would be especially effective at getting rid of very high concentrations of toxic organic wastes like BTX, including stores of pure chemicals past their "use by" date. They say that, unlike conventional approaches, the higher the concentration of waste the better their bioreactor works.

###

A nonprofit organization with a membership of nearly 159,000 chemists and chemical engineers, the American Chemical Society publishes scientific journals and databases, convenes major research conferences, and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio.


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society. "New "Restaurant" For Bacteria May Improve Pollution Clean-Up." ScienceDaily. ScienceDaily, 5 February 1999. <www.sciencedaily.com/releases/1999/02/990205085440.htm>.
American Chemical Society. (1999, February 5). New "Restaurant" For Bacteria May Improve Pollution Clean-Up. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/1999/02/990205085440.htm
American Chemical Society. "New "Restaurant" For Bacteria May Improve Pollution Clean-Up." ScienceDaily. www.sciencedaily.com/releases/1999/02/990205085440.htm (accessed July 26, 2014).

Share This




More Earth & Climate News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Virginia Governor Tours Tornado Aftermath

Virginia Governor Tours Tornado Aftermath

AP (July 25, 2014) — Virginia Gov. Terry McAuliffe toured the Cherrystone Family Camping and RV Resort on the Chesapeake Bay today, a day after it was hit by a tornado. The storm claimed two lives and injured dozens of others. (July 25) Video provided by AP
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) — Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) — The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Bill Gates: Health, Agriculture Key to Africa's Development

Bill Gates: Health, Agriculture Key to Africa's Development

AFP (July 24, 2014) — Health and agriculture development are key if African countries are to overcome poverty and grow, US software billionaire Bill Gates said Thursday, as he received an honourary degree in Ethiopia. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins