Featured Research

from universities, journals, and other organizations

Flatworms Are Oldest Living Ancestors To Those Of Us With Right And Left Sides, Researchers Report In Science

Date:
March 22, 1999
Source:
American Association For The Advancement Of Science
Summary:
A team of scientists from Spain and the UK has determined that a certain curiously primitive group of flatworms are the oldest living ancestors to all "bilateral" animals-that is, those with a right and left side. These worms were previously thought to belong to a much younger group of organisms, and their newfound identity also implies that bilateral organisms began making their debut on Earth earlier than previously thought.

Washington DC - A team of scientists from Spain and the UK has determined that a certain curiously primitive group of flatworms are the oldest living ancestors to all "bilateral" animals-that is, those with a right and left side. These worms were previously thought to belong to a much younger group of organisms, and their newfound identity also implies that bilateral organisms began making their debut on Earth earlier than previously thought. The finding is reported in the 19 March issue of Science.

Researchers agree that the first multicellular animals had circular shapes that were "radially symmetrical," just like the jellyfish or sea anemones of today. A crucial step in the evolution of more complex organisms was the transition to body shapes with bilateral symmetry. (For example, most of the features that allow an animal to move itself from one place to another--legs, fins, wings--can only develop on bilateral organisms.) In spite of the major evolutionary importance of this transition, until now scientists have known little about the earliest bilateral animals.

It has generally been thought that most bilaterians arose during a dramatic diversification of animal life (dubbed the Cambrian explosion) 540-500 million years ago. That's because the ancestors of nearly all major modern animal groups, or phyla, made an appearance in the fossil record during this period. However, evidence has been growing that there was an extended and fruitful period before the Cambrian when bilateral organisms may have arisen and diversified. The new study by Jaume Baguñà, of the University of Barcelona, and his colleagues supports this theory by identifying a group of contemporary flatworms called the Acoela as the living descendants of an early lineage from this pre-Cambrian time. (Flatworms, several of which are parasites, are only distantly related to, and much simpler than, the familiar earthworms.)

"It may well be that the origin of bilateral organisms occurred a bit earlier on, [before the Cambrian explosion,] from simple animals whose fossils have not been recovered," said Baguñà. "This may mean that we need to look more carefully at pre-Cambrian rocks or sediments to search for primitive bilateral animals."

Baguñà and his colleagues, Iñaki Ruiz-Trillo and Marta Riutort of the University of Barcelona and D. Timothy J. Littlewood and Elisabeth A. Herniou of the Natural History Museum in London, began their study with the intention of investigating a troublesome subgroup of flatworms that didn't fit neatly into its prescribed classification. The Acoela, as this subgroup is known, are unlike other flatworms for a number of reasons, particularly because they are unusually primitive. For example, other flatworms have digestive tracts of some sort, but the Acoela lack them altogether.

To determine whether the Acoela might not be better classified separately from the other flatworms, Baguñà and his colleagues took a molecular approach. Molecular studies such as this investigate the evolutionary relationships among taxonomic groups, based on the assumption that mutations in a gene occur at a constant rate. Once researchers have determined the sequence of a particular gene, they can compare the gene in a variety of organisms. If the sequences are significantly different, that implies that the organisms are more distantly related. In other words, more time has passed since they diverged from their common ancestor.

The research team sequenced the Acoela's "18S rDNA" gene, which had already been sequenced in many other animals, including other types of flatworms. The scientists then compared this sequence in a variety of animals, using a software program to create an evolutionary road map that showed the most likely relationships among the organisms. According to the results, the Acoela were the first group of organisms to split off from the radial organisms, well before the other flatworms arose in the midst of the Cambrian explosion. The scientists suggest that the Acoela should be classified in their own new phylum.

At some point during the period in which bilateral animals appeared, another important transition took place, this one involving a fundamental change in the way animals developed as embryos. Radial animals are also "diploblastic," meaning their tissues develop from two primary layers of embryonic cells. In contrast, tissues of the more complex "triploblasts" develop from three primary layers of embryonic cells. Because information from the pre-Cambrian is so sparse, researchers don't know yet the details of when or how this other change occurred-they just know that bilaterians were also triploblastic. "The finding of the Acoela well in the middle of the long branch separating diploblasts from triploblasts may be the first item to bridge the gap and to give us a better understanding of how the major body plans emerged," said Baguñà.


Story Source:

The above story is based on materials provided by American Association For The Advancement Of Science. Note: Materials may be edited for content and length.


Cite This Page:

American Association For The Advancement Of Science. "Flatworms Are Oldest Living Ancestors To Those Of Us With Right And Left Sides, Researchers Report In Science." ScienceDaily. ScienceDaily, 22 March 1999. <www.sciencedaily.com/releases/1999/03/990322062150.htm>.
American Association For The Advancement Of Science. (1999, March 22). Flatworms Are Oldest Living Ancestors To Those Of Us With Right And Left Sides, Researchers Report In Science. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/1999/03/990322062150.htm
American Association For The Advancement Of Science. "Flatworms Are Oldest Living Ancestors To Those Of Us With Right And Left Sides, Researchers Report In Science." ScienceDaily. www.sciencedaily.com/releases/1999/03/990322062150.htm (accessed September 30, 2014).

Share This



More Fossils & Ruins News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

2,000 Year Old Pre-Inca Cloak on Display in Lima

2,000 Year Old Pre-Inca Cloak on Display in Lima

AFP (Sep. 27, 2014) — A 2,000 year-old Pre-Inca cloak that is believed to represent an agricultural calendar of the Paracas culture is on display in Lima. Duration: 00:39 Video provided by AFP
Powered by NewsLook.com
Original Mozart Sonata Manuscript Found in Budapest

Original Mozart Sonata Manuscript Found in Budapest

AFP (Sep. 26, 2014) — Considered lost for over two centuries, the original manuscript of one of the most famous works of Mozart's Sonata in A major has been uncovered in a library in Budapest. Duration: 01:04 Video provided by AFP
Powered by NewsLook.com
Underground Art Reveals WW1 Soldiers' Hopes and Fears

Underground Art Reveals WW1 Soldiers' Hopes and Fears

AFP (Sep. 25, 2014) — American doctor and photographer Jeff Gusky reveals the underground quarries used by the soldiers of World War One, and the artwork they left behind which illustrates their hopes and fears. Duration: 02:15 Video provided by AFP
Powered by NewsLook.com
Raw: Ice Age Wooly Mammoth Remains for Sale

Raw: Ice Age Wooly Mammoth Remains for Sale

AP (Sep. 23, 2014) — A rare, well-preserved skeleton of a woolly mammoth is going on sale at Summers Place Auctions hope the 11.5-foot tall, almost intact specimen will fetch between $245,000 to $409,000. (Sept. 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins