Featured Research

from universities, journals, and other organizations

Scientists Report How A Gene Can "Jump"

Date:
July 10, 2000
Source:
University Of Wisconsin, Madison
Summary:
Nearly fifty years after a landmark paper proposed the existence of what later came to be called jumping genes, scientists are getting their first clear snapshot of one caught in midair.

Nearly fifty years after a landmark paper proposed the existence of what later came to be called jumping genes, scientists are getting their first clear snapshot of one caught in midair.

In the July 7 issue of the journal Science, a UW-Madison team describes the 3-dimensional, atomic structure of an enzyme that allows a transposable genetic element in a bacterium to "jump" from one part of DNA to another.

The structure of this protein-DNA complex -- featured on the journal's cover -- gives researchers a new framework for understanding how transposable elements operate, according to the paper's lead authors Ivan Rayment and Bill Reznikoff. The finding also may accelerate the search for new drugs to inhibit AIDS.

"Transposable elements have the potential to remodel genomes and to facilitate the movement of genetic information, such as antibiotic resistance," says Reznikoff, a molecular geneticist.

The transposition of DNA is central to genetics and evolution. Transposable elements are an important source of the mutations on which natural selection operates. Scientists estimate that transposable elements make up as much as 30 percent of the human genome, for example.

In Science, the Wisconsin team describes the 3-dimensional structure of the Escherischia coli Tn5 transposase bound to the Tn5 transposable element. "Our discovery is an important step in understanding the structural basis for transposition," says Rayment, a crystallographer and molecular biologist.

The team's findings have implications for AIDS researchers because the human immunodeficiency virus-1 (HIV-1) uses a process similar to DNA transposition to insert itself into human DNA.

"Just as enzymes called transposases make transposition possible, enzymes called integrases catalyze similar events in retroviruses, including HIV-1," Rayment says. "Researchers have now studied the catalytic core of five different transposases and integrases, and they show remarkable similarity. Therefore, a clear image of one of them provides greater understanding of all similar ones."

To control AIDS, researchers in the pharmaceutical industry are screening compounds that can inhibit HIV-1 integrase, according to Rayment and Reznikoff. Because HIV-1 integrase and Tn5 transposase have similar structures, the Wisconsin scientists believe they now have a model system that can help scientists identify or design compounds effective in controlling HIV-1.

The paper's co-authors include Douglas Davies and Igor Goryshin. Davies worked with Rayment to develop the DNA-enzyme crystals and analyze them using X-ray crystallography. Goryshin, a molecular biologist, worked with Reznikoff in developing, isolating and purifying the transposase. The research team -- all with the Department of Biochemistry in the College of Agricultural and Life Sciences -- worked together to solve the structure of the complex.

In 1951, geneticist Barbara McClintock proposed "controlling elements" to explain genetic patterns she observed in corn. Many geneticists were slow to appreciate the importance McClintock's discovery, for which she received a Nobel Prize in 1983. However, researchers have since made remarkable progress in understanding the molecular nature transposable elements.

Past studies of the structure of the enzymes that trigger transposition have focused on the core region that cuts the element from DNA, Rayment says. Researchers have not known what the entire enzyme looks like or how it binds to and interacts with DNA. Capturing the 3-dimensional structure of the protein-DNA complex, allowed the UW-Madison team to present a much clearer view of how the enzyme and DNA interact at the molecular level.

Prior to transposition, one copy of Tn5 transposase binds to a specific region at one end of the transposon and a second copy binds to an identical region at the opposite end. Neither enzyme can cut DNA at the site to which it binds. When events produce a loop in the Tn5 transposable element the two enzymes at the ends come together. The Wisconsin research shows how the architecture of the resulting protein-DNA complex positions each enzyme so it can then cleave the opposite end of the transposable element DNA from its initial binding site. The Tn5-enzyme complex can then move freely before it inserts itself into a new location.

The research was supported by: state funding to the College of Agricultural and Life Sciences, and grants from the National Institute of General Medical Sciences; National Institute of Arthritis and Musculoskeletal and Skin Diseases; the U.S. Department of Energy; and a Vilas Associates Award from the UW-Madison.


Story Source:

The above story is based on materials provided by University Of Wisconsin, Madison. Note: Materials may be edited for content and length.


Cite This Page:

University Of Wisconsin, Madison. "Scientists Report How A Gene Can "Jump"." ScienceDaily. ScienceDaily, 10 July 2000. <www.sciencedaily.com/releases/2000/07/000710071506.htm>.
University Of Wisconsin, Madison. (2000, July 10). Scientists Report How A Gene Can "Jump". ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2000/07/000710071506.htm
University Of Wisconsin, Madison. "Scientists Report How A Gene Can "Jump"." ScienceDaily. www.sciencedaily.com/releases/2000/07/000710071506.htm (accessed August 22, 2014).

Share This




More Plants & Animals News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Endangered Red Wolves Face Uncertain Future

Endangered Red Wolves Face Uncertain Future

AP (Aug. 22, 2014) A federal judge temporarily banned coyote hunting to save endangered red wolves, but local hunters say that the wolf preservation program does more harm than good. Meanwhile federal officials are reviewing its wolf program in North Carolina. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins