Featured Research

from universities, journals, and other organizations

Insect Defenses Point The Way To Defeating Bacterial Antibiotic Resistance

Date:
October 24, 2000
Source:
Wistar Institute
Summary:
Insects dominate the animal kingdom, both in terms of numbers and variety. One reason for their success is their remarkably swift and effective system of defense against infections, which differs dramatically from the immune systems of higher-order animals, including humans. Key to the insect immune system is an array of small antimicrobial peptide molecules.

Insects dominate the animal kingdom, both in terms of numbers and variety. One reason for their success is their remarkably swift and effective system of defense against infections, which differs dramatically from the immune systems of higher-order animals, including humans. Key to the insect immune system is an array of small antimicrobial peptide molecules. Most act, in essence, by latching on to the outer or inner membranes of bacteria and punching holes in the membranes, thereby killing the bacteria.

Related Articles


Now, in a new study, scientists at The Wistar Institute have identified an intracellular target for one of these antimicrobial molecules first isolated from a European sap-sucking insect. The molecule itself is currently being evaluated for its potential as an antibiotic in mammals, including humans. Knowledge of the receptor, however, may make it possible to develop an entirely new class of antibiotics, each rationally designed to fight a specific disease-causing bacterium or fungus. The new findings were published electronically on October 21 in the journal Biochemistry.

"Insects often live in hostile environments, and they are not very long-lived," says Wistar associate professor Laszlo Otvos Jr., Ph.D., lead author on the study. "So they need a rapid way to kill bacteria. In earlier work, we and others discovered several powerful antibiotic molecules used by flies, bees, and other insects to defend themselves against infection. In the current study, we identified the receptor for one of these molecules, which is potentially much more significant. With knowledge of the receptor, the doors are open to developing strain-specific antibiotics."

The new receptor is a heat shock protein referred to as DnaK. Heat shock proteins, in both bacteria and animals, play an all-important role during infections that produce fevers. Fevers cause the proteins that make up all cells to become misshapen, in some cases destroying their ability to do the work for which they were designed. Heat shock proteins help repair the problems, correcting the shapes of the proteins and restoring them to functionality.

The mechanism by which the sap-sucking insect's antimicrobial molecule kills bacteria, then, is to disrupt the bacterial heat-shock protein repair system. Importantly, this insect peptide does not bind to the human equivalent of the DnaK receptor, known as Hsp70, greatly enhancing its pharmaceutical potential in humans. If the peptide bound to the human Hsp70 receptor, it and related compounds might pose a danger to human cells.

With the receptor now identified, scientists might be able to develop new drug compounds with improved characteristics that act on the same site. The new compounds might be more easily synthesized than the naturally occurring one, for example, or show greater stability in mammalian systems. They might also be tailored to target specific bacterial or fungal strains with heightened effectiveness.

Other Wistar co-authors on the study are postdoctoral trainee Insug O; research technicians Patricia J. Consolvo and Barry A. Condie, and assistant professor Magdalena Blaszczyk-Thurin, Ph.D. Additional co-authors at other institutions are Mark E. Rogers, M-Scan Inc.; Sandor Lovas, Creighton University; and Philippe Bulet, Institute de Biologie Moleculaire et Cellulaire. Funding for the research was provided by the National Institutes of Health.


Story Source:

The above story is based on materials provided by Wistar Institute. Note: Materials may be edited for content and length.


Cite This Page:

Wistar Institute. "Insect Defenses Point The Way To Defeating Bacterial Antibiotic Resistance." ScienceDaily. ScienceDaily, 24 October 2000. <www.sciencedaily.com/releases/2000/10/001023204026.htm>.
Wistar Institute. (2000, October 24). Insect Defenses Point The Way To Defeating Bacterial Antibiotic Resistance. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2000/10/001023204026.htm
Wistar Institute. "Insect Defenses Point The Way To Defeating Bacterial Antibiotic Resistance." ScienceDaily. www.sciencedaily.com/releases/2000/10/001023204026.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com
Ivory Trade Boom Swamps Law Efforts

Ivory Trade Boom Swamps Law Efforts

Reuters - Business Video Online (Dec. 17, 2014) Demand for ivory has claimed the lives of tens of thousands of African elephants and now a conservation report says the illegal trade is overwhelming efforts to enforce the law. Amy Pollock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins