Featured Research

from universities, journals, and other organizations

Complex Carbohydrate Found To Regulate Plant Growth

Date:
October 29, 2001
Source:
University Of Georgia
Summary:
Twenty-five years ago, Alan Darvill and colleagues described one of the most complex carbohydrates found in nature. Called rhamnogalacturan II or RG-II, it is found in plant cell walls. The carbohydrate is found in all higher plants and it requires a host of different proteins to manufacture. Yet for more than two decades, scientists haven't had a clue about its function.

Twenty-five years ago, Alan Darvill and colleagues described one of the most complex carbohydrates found in nature. Called rhamnogalacturan II or RG-II, it is found in plant cell walls. The carbohydrate is found in all higher plants and it requires a host of different proteins to manufacture. Yet for more than two decades, scientists haven't had a clue about its function.

"In a sense, we've been on a quest to understand what it's doing in plants ever since we discovered it," said Darvill, professor of biochemistry and co-director of UGA's Complex Carbohydrate Research Center.

With a lot of hard work, the efforts of dozens of scientists around the world, and a bit of luck, that quest has come to an end.

In an article published in today's issue of Science, CCRC scientists present evidence that normal plant growth depends on how RG-II is organized in cell walls.

"RG-II has been known as an obscure, structurally weird polysaccharide that plants make," said Malcolm O'Neill, senior research associate at UGA's CCRC. "But we had no idea why plants went to all the effort to make it. There are 50 to 60 enzymes involved, 12 different sugars and 22 different linkages. There's even one sugar that's actually not been found anywhere else."

The work of O'Neill, Darvill, Stefan Eberhard and Peter Albersheim shows that normal plant growth depends on the ability of RG-II strands to cross-link with boron and form a network in the cell wall matrix. Boron cross-links RG-II strands together in a fishnet-like structure that holds other components in the cell wall in place.

"You can think of the cell wall as a bit like reinforced concrete," O'Neill said. "Tiny cellulose fibers are the steel rods and the matrix is the concrete. Only in the cell wall, the concrete has the consistency of jello."

One clue to RG-II's role emerged when O'Neill found that a dwarf mutant of Arabidopsis - a relative of cabbage and mustard - had normal amounts of RG-II in its cell walls but only half of the RG-II was cross-linked by boron.

"Without that cross-linking, the cell walls apparently don't have the strength to expand normally and the plant is dwarfed," he said.

Since the Arabidopsis mutant was known to lack the enzyme that makes the sugar L-fucose, O'Neill said he suspected that RG-II in the mutant would be deficient in fucose. RG-II is made of about 30 sugars arranged in a chain with four sidechains and L-fucose is found on two of the sidechains. O'Neill found that the mutant's RG-II not only lacked fucose, but also substituted a different sugar in its place.

He also discovered that when mutants received fertilizer containing L-fucose, plant growth was normal. That's because the plants contained normal amounts of fucose and RG-II molecules occurred as the boron cross-linked form.

"The sugar substitution changes the shape of the molecule," Darvill said. "As in all molecules - and in all biology - it's the shapes of molecules that control their function."

In a normal plant, boron binds to RG-II and forms a bridge that holds everything together. In the mutant, a little bit of the structure of the RGII has been changed and because of the change in shape, it can't hold the boron quite as well, Darvill said. Fertilizing mutants with high levels of boron also reversed dwarfing because the high amount of available boron effectively forced RG-II to cross-link.

"It almost makes this carbohydrate analogous to proteins, where activity depends on their shapes," Darvill said. "Here's a carbohydrate that has a shape that has an activity." This work shows answers to both the role of boron and RG-II in plants, Darvill said.

"The boron is stuck between two molecules and holds them together," he said. "If you don't allow that to happen, then you don't get normal plant growth."


Story Source:

The above story is based on materials provided by University Of Georgia. Note: Materials may be edited for content and length.


Cite This Page:

University Of Georgia. "Complex Carbohydrate Found To Regulate Plant Growth." ScienceDaily. ScienceDaily, 29 October 2001. <www.sciencedaily.com/releases/2001/10/011029073323.htm>.
University Of Georgia. (2001, October 29). Complex Carbohydrate Found To Regulate Plant Growth. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2001/10/011029073323.htm
University Of Georgia. "Complex Carbohydrate Found To Regulate Plant Growth." ScienceDaily. www.sciencedaily.com/releases/2001/10/011029073323.htm (accessed August 20, 2014).

Share This




More Plants & Animals News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) — Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins