Featured Research

from universities, journals, and other organizations

Crucial Genetic Diversity Enzyme Long Sought By Biologists Discovered By Scientists At The Scripps Research Institute

Date:
November 12, 2001
Source:
Scripps Research Institute
Summary:
Simultaneous reports by two teams at The Scripps Research Institute (TSRI), led by Professor Paul Russell, Ph.D., and Associate Professor Clare H. McGowan, Ph.D., identify the "resolvase" enzyme that may be responsible for generating genetic diversity during sexual reproduction and could be a target for improved anti-cancer therapy.

Simultaneous reports by two teams at The Scripps Research Institute (TSRI), led by Professor Paul Russell, Ph.D., and Associate Professor Clare H. McGowan, Ph.D., identify the "resolvase" enzyme that may be responsible for generating genetic diversity during sexual reproduction and could be a target for improved anti-cancer therapy.

In the current issues of the journals Cell and Molecular Cell, the researchers have published papers that describe Mus81, a resolvase enzyme of the fission yeast Schizosaccharomyces pombe, and its human analog.

Resolvase is essential for a crucial step in DNA recombination, says Russell, because it is the molecule that allows two chromosomes to cross over. "It is one of the most important enzymes involved in genetic recombination," he says.

Genetic recombination occurs in the process of meiosis, when chromosomes from the mother and father become paired. The aligned chromosomes break and DNA strands from both chromosomes become intertwined at the point of the cross-over. At the molecular level, this combining happens at what is called a "Holliday junction," where the strands of DNA literally cross one another.

However, the DNA must at some point be uncrossed by cutting across the Holliday junction in the last crucial step in genetic recombination. This is the responsibility of resolvase enzymes. The final product of this process is a pair of new chromosomes that have genetic material from both parents.

"[Resolvase] is the molecule that allows children to inherit a unique mixture of traits from mother and father, without it we wouldn't have the infinite range of genetic combinations that makes us all different," says McGowan.

It has long been known that there should be such enzymes, and several examples from other organisms, such as bacteria, have been around for years. And for years, scientists have searched for the resolvase gene in eukaryotic cells, such as humans and yeast, which have linear chromosomes packaged in a nucleus. Until now, none has been found.

Russell and his colleagues showed that Mus81 is an essential component of the resolvase enzyme in yeast cells. Mus81 is structurally unrelated to bacterial resolvases. In a related work, McGowan's study demonstrated that a human analog of the Mus81 protein also has resolvase activity.

The identification of a human resolvase may have a profound effect on cancer therapy because the enzyme also has an important role in cell replication.

When cells are replicating their DNA prior to division, they have mechanisms to sense if the DNA is damaged. When the DNA is damaged, a cell's replication machinery will stop, spontaneously back up and form a Holliday junction. Resolvase recombines DNA strands at Holliday junctions and this allows the replication machinery to bypass the damaged DNA.

Cancer cells are often defective in the mechanisms that sense damaged DNA. Russell and McGowan envision that treatment of tumors with chemotherapeutics that damage DNA, combined with rational targeting of resolvase activity, could be a highly potent cancer treatment.

This research is also another vindication of fission yeast as a model organism for human biology. Resembling humans, S. pombe cells reproduce sexually through meiosis and have a similar cell cycle. Because of the ease of manipulating yeast genetically and because of their uncanny similarities, S. pombe is a good model system for studying the human cell cycle.

"S. pombe has contributed enormously towards understanding the human cell cycle and towards advances in the treatment and understanding of cancer," says McGowan.

The research article "Mus81-Eme1 Are Essential Components of a Holliday Junction Resolvase" is authored by Michael N. Boddy, Pierre-Henri L. Gaillard, W. Hayes McDonald, Paul Shanahan, John R. Yates 3rd, and Paul Russell and appears in the November 16, 2001 issue of Cell.

The research article "Human Mus81-Associated Endonuclease Cleaves Holliday Junctions In Vitro" is authored by Xiao-Bo Chen, Roberta Melchionna, Cecile-Marie Denis, Pierre-Henri L. Gaillard, Alessandra Blasina, Inez Van de Weyer, Michael N. Boddy, Paul Russell, Jorge Vialard, and Clare H. McGowan and appears in the November, 2001 issue of Molecular Cell.

The research was funded by the National Institutes of Health, by The R.W. Johnson Pharmaceutical Research Institute, and by the Janssen Research Foundation.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Cite This Page:

Scripps Research Institute. "Crucial Genetic Diversity Enzyme Long Sought By Biologists Discovered By Scientists At The Scripps Research Institute." ScienceDaily. ScienceDaily, 12 November 2001. <www.sciencedaily.com/releases/2001/11/011112073641.htm>.
Scripps Research Institute. (2001, November 12). Crucial Genetic Diversity Enzyme Long Sought By Biologists Discovered By Scientists At The Scripps Research Institute. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2001/11/011112073641.htm
Scripps Research Institute. "Crucial Genetic Diversity Enzyme Long Sought By Biologists Discovered By Scientists At The Scripps Research Institute." ScienceDaily. www.sciencedaily.com/releases/2001/11/011112073641.htm (accessed September 16, 2014).

Share This



More Plants & Animals News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins