Featured Research

from universities, journals, and other organizations

Droplets In Salt Crystals Confirm Historic Ocean Changes

Date:
December 11, 2001
Source:
Johns Hopkins University
Summary:
Microscopic water droplets trapped inside ancient salt crystals have provided evidence supporting a radical theory that the chemical composition of Earth's oceans has changed over the past 500 million years.

Microscopic water droplets trapped inside ancient salt crystals have provided evidence supporting a radical theory that the chemical composition of Earth's oceans has changed over the past 500 million years.

“We’re not talking about gigantic changes,” says Lawrence Hardie, professor of earth and planetary sciences in the Krieger School of Arts and Sciences at The Johns Hopkins University and the originator of the theory. “It’s not going to suddenly change from what it is today, for example, into something that is very alkaline, but we do see changes in the levels of some of the major chemical components dissolved in ocean water, and these changes may be significant enough to affect marine life forms.”

Hardie’s theory may help scientists understand the origins of Britain’s White Cliffs of Dover and other mammoth chalk deposits around the globe. Geologists know that these chalk deposits were formed from the skeletons of microscopic marine creatures called nanoplankton, but they have had difficulty explaining why the nanoplankton were so abundant when the chalk deposits formed, an era in geological history known as the Cretaceous (Greek for chalk) period.

“The nanoplankton just went whacko, and because the thinking had previously been that sea chemistry was the same in the Cretaceous, it was hard to understand why,” says Hardie. “But my theory suggests that there may have been higher levels of calcium dissolved in seawater at that time, and that may have fueled a nanoplankton population boom.”

First proposed in 1984 but not published until 1990, Hardie’s theory about changing seawater chemistry met with heavy resistance. It links changes in the levels of calcium, magnesium, potassium, and sulfate ions dissolved in seawater to oscillations in the rate of sea floor spreading at the mid-ocean ridges. The ridges are areas where tectonic plates are pulling apart, exposing underlying lava to the ocean, which then cools and forms new sea floor.

“The ruling paradigm on seawater chemistry, its major ions and such, was that there had been no change in the past 2 billion years,” says Hardie. “The bulk of geochemists who tackled this problem starting in the late 1950s thought that river water coming into the ocean interacts with sediments in the ocean, and that sort of acts of like a chemical buffer system to keep the chemistry of seawater the same forever.”

The latest evidence to fortify Hardie’s theory comes from a project led by former Hardie student Tim Lowenstein, now a professor of geology at Binghamton University in New York. Lowenstein has been studying microscopic drops of brine in salt crystals from various times in Earth’s history. The crystals enclose the tiny drops of brine, known as fluid inclusions, as they form from evaporating seawater.

Lowenstein, Hardie, and others examined the chemical content of the inclusions with a scanning electron microscope equipped with an X-ray beam adapted for chemical analysis. They found that Hardie’s theory accurately predicted what they would find in the inclusions on the basis of the time in history when the salt crystals formed. They published their findings in “Science” last month.

For Hardie, the results are a vindication. He feels evidence that all might not be right with the “unchanging oceans” model can be traced as far back as the turn of the 20th century, when the German salt industry hired chemist E. H. van’t Hoff, winner of the first Nobel prize for chemistry, to study some of Germany’s massive salt deposits.

“He was trying to get some experimental evidence for how these huge masses of salt formed,” Hardie says. “They assumed, like everyone else did at the time, that seawater was constant through time. But they looked at these deposits, and they found that there were very few that looked like they had come from something like today’s seawater.”

Scientists eventually ascribed the differences to changes that had occurred after the salts were buried. But the discovery in 1976 of hot brine springs on a mid-ocean Atlantic ridge started Hardie thinking about another possibility.

Hardie became interested in the springs because “the chemistry of the water that comes out of these springs doesn’t look anything like seawater, and it also doesn’t look anything like river water.”

Oceanographers learned that heat from lava at the ridges was creating convection cells that drove seawater into cracks and crevices in the sea floor and out again at the brine springs. The seawater’s trip beneath the ocean floor took out magnesium and sulfate and added calcium and potassium.

Hardie developed a theory that envisioned the chemical content of the oceans as the sum of the input from the sea floor brine springs mixed with the influx of material flowing in from the continents through rivers.

“It’s a simple model, really, but those are the best ones,” he says. “There’s no heavy math; it’s really nothing more than bean counting.”

Using other geological evidence to assess changes in the rate of sea floor spreading, Hardie made predictions for seawater composition at several points in geological history. He has previously tested these predictions against evidence found in samples of ancient limestone, salt and other “evaporites.”

“Astonishingly, this very simple model does a pretty good job. It gets the boundaries in time between changes in ocean chemistry pretty darn close, give or take 10 million years,” he says.

Acknowledging with a laugh the irony such a statement carries for non-geologists, he adds, “Which for us is pretty close.”

Hardie is currently working with Steven Stanley, a paleontologist and fellow Johns Hopkins earth and planetary sciences professor, to see if they can further solidify the potential link between his theories and the nanoplankton boom in the Cretaceous period that led to the great chalk deposits. They are testing contemporary nanoplankton’s reactions to seawater altered with added calcium.

Funding for the research on the fluid inclusions was provided by the National Science Foundation’s Earth Science Program. Other authors on the “Science” paper were Michael Timofeeff, Sean Brennan, and Robert Demicco, all of Binghamton University.

Related Web site:

Lawrence Hardie: http://www.jhu.edu/~eps/faculty/hardie/index.html


Story Source:

The above story is based on materials provided by Johns Hopkins University. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins University. "Droplets In Salt Crystals Confirm Historic Ocean Changes." ScienceDaily. ScienceDaily, 11 December 2001. <www.sciencedaily.com/releases/2001/12/011210163624.htm>.
Johns Hopkins University. (2001, December 11). Droplets In Salt Crystals Confirm Historic Ocean Changes. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2001/12/011210163624.htm
Johns Hopkins University. "Droplets In Salt Crystals Confirm Historic Ocean Changes." ScienceDaily. www.sciencedaily.com/releases/2001/12/011210163624.htm (accessed August 27, 2014).

Share This




More Earth & Climate News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Waves, Minor Flooding from Hurricane

Big Waves, Minor Flooding from Hurricane

AP (Aug. 27, 2014) Thundering surf spawned by Hurricane Marie pounded the Southern California coast Wednesday, causing minor flooding in a low-lying beach town. High surf warnings were posted for Los Angeles County south through Orange County. (Aug. 27) Video provided by AP
Powered by NewsLook.com
Calif. Quake Underscores Need for Early Warning

Calif. Quake Underscores Need for Early Warning

AP (Aug. 26, 2014) Researchers at UC Berkeley are testing a prototype of an earthquake early warning system that California is pursuing years after places like Mexico and Japan already have them up and running. (August 26) Video provided by AP
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Brazil Tries Genetically Modified Mosquitoes to Fight Dengue

Brazil Tries Genetically Modified Mosquitoes to Fight Dengue

AFP (Aug. 25, 2014) A factory in the industrial state of Sao Paulo produces genetically modified mosquitoes to fight dengue, a deadly tropical disease more prevalent in Brazil than anywhere else in the world. Duration: 00:57 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins