Featured Research

from universities, journals, and other organizations

Plant Stems And Leaves Are Always Proportional To Roots, Scientists Find

Date:
February 22, 2002
Source:
Cornell University
Summary:
Add this universal truth to biology textbooks: the mass of a plant's leaves and stems is proportionally scaled to that of its roots in a mathematically predictable way, regardless of species or habitat. In other words, biologists can now reasonably estimate how much biomass is underground just by looking at the stems and leaves above ground.

ITHACA, N.Y. -- Add this universal truth to biology textbooks: the mass of a plant's leaves and stems is proportionally scaled to that of its roots in a mathematically predictable way, regardless of species or habitat. In other words, biologists can now reasonably estimate how much biomass is underground just by looking at the stems and leaves above ground.

Up to now, plant biologists could only theorize about the ways stem and leaf biomass relate to root biomass across the vast spectrum of land plants. Researchers from Cornell University and the University of Arizona spent two years poring over data for a vast array of plants -- from weeds to bushes to trees -- in order to derive mass-proportional relations among major plant parts.

This evidence now provides environmental researchers with clues to how much carbon is stored in plants below as well as above ground. "Global climate modelers now can reasonably estimate how much carbon is sequestered in plants on a worldwide basis," says Karl J. Niklas, Cornell's Liberty Hyde Bailey Professor of Plant Biology, whose article appears in the latest issue of Science (Feb. 22). The article, "Global Allocation Rules for Patterns of Biomass Partitioning in Seed Plants," is co-authored by Brian J. Enquist, a University of Arizona assistant professor of ecology and evolutionary biology.

The scientists wanted to know if there were observable, universal patterns of biomass storage across all plant species in different habitats, and they wanted to know if such patterns could be predicted. "Yes and yes," says Niklas. "These patterns can be found in any terrestrial plant, whether you are talking about bamboo, or palm trees, or pine trees or bushes. The same pattern can be found across the whole spectrum of plants on land." Using a mathematically based research method called allometry, which studies the relative growth rates and proportions of different-size parts of organisms, Niklas and Enquist developed biophysical models that would link data on hundreds of specific plants. They studied plant species differing radically in overall size (from giant oak trees to some of the smallest flowering plants such as mouse-ear cress) and found that the proportions of leaf, stem, and root biomass remain, on average, constant.

Enquist's part of the research was supported by the National Science Foundation and Niklas' portion was supported by New York State Hatch grant funds.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "Plant Stems And Leaves Are Always Proportional To Roots, Scientists Find." ScienceDaily. ScienceDaily, 22 February 2002. <www.sciencedaily.com/releases/2002/02/020222073630.htm>.
Cornell University. (2002, February 22). Plant Stems And Leaves Are Always Proportional To Roots, Scientists Find. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2002/02/020222073630.htm
Cornell University. "Plant Stems And Leaves Are Always Proportional To Roots, Scientists Find." ScienceDaily. www.sciencedaily.com/releases/2002/02/020222073630.htm (accessed August 28, 2014).

Share This




More Plants & Animals News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Super Healthful Fruits and Vegetables: Which Are Best?

Super Healthful Fruits and Vegetables: Which Are Best?

Ivanhoe (Aug. 27, 2014) We all know that it is important to eat our fruits and vegetables but do you know which ones are the best for you? Video provided by Ivanhoe
Powered by NewsLook.com
Bad Memories Turn Good In Weird Mouse Brain Study

Bad Memories Turn Good In Weird Mouse Brain Study

Newsy (Aug. 27, 2014) MIT researchers were able to change whether bad memories in mice made them anxious by flicking an emotional switch in the brain. Video provided by Newsy
Powered by NewsLook.com
Do Couples Who Smoke Weed Together Stay Together?

Do Couples Who Smoke Weed Together Stay Together?

Newsy (Aug. 27, 2014) A study out of University at Buffalo claims couples who smoke marijuana are less likely to experience intimate partner violence. Video provided by Newsy
Powered by NewsLook.com
Panda Might Have Faked Pregnancy To Get Special Treatment

Panda Might Have Faked Pregnancy To Get Special Treatment

Newsy (Aug. 27, 2014) A panda in China showed pregnancy symptoms that disappeared after two months of observation. One theory: Her pseudopregnancy was a ploy for perks. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins