Featured Research

from universities, journals, and other organizations

Researchers Unravel Anthrax Genomes

Date:
May 10, 2002
Source:
NIH/National Institute Of Allergy And Infectious Diseases
Summary:
Researchers report the genetic comparison of two important isolates of the anthrax bacterium: the well-known Ames strain and an isolate from the recent Florida anthrax attacks. Although the study does not pinpoint the exact origin of the Florida isolate, it confirms previous scientific reports that the bacterium is derived from the Ames strain. In addition, the study shows how whole-genome sequencing technology and computational methods can be a powerful approach for analyzing anthrax and other bacterial outbreaks. Those techniques will enable researchers to more accurately trace the origin of individual bacterial strains, determine if those strains have been genetically modified, and assess differences in their ability to cause disease or resist antibiotics.

May 9, 2002 -- Researchers report today the genetic comparison of two important isolates of the anthrax bacterium: the well-known Ames strain and an isolate from the recent Florida anthrax attacks. Although the study does not pinpoint the exact origin of the Florida isolate, it confirms previous scientific reports that the bacterium is derived from the Ames strain. In addition, the study shows how whole-genome sequencing technology and computational methods can be a powerful approach for analyzing anthrax and other bacterial outbreaks. Those techniques will enable researchers to more accurately trace the origin of individual bacterial strains, determine if those strains have been genetically modified, and assess differences in their ability to cause disease or resist antibiotics. The report appears online May 9 in Science Express.

"This study provides a framework for future research on the genetic variation among anthrax bacterial strains," says Anthony S. Fauci, M.D., director of the National Institute of Allergy and Infectious Diseases (NIAID). NIAID teamed with the Office of Naval Research (ONR), the National Science Foundation, and other agencies to fund the research. "We now can expand on this information by generating genomic sequences for many different anthrax strains, allowing us to distinguish among them at the single-nucleotide level."

Nucleotides are the building blocks of DNA, typically described as the single-letter bases A, C, G and T. The order or sequence of those nucleotides determines the products encoded by individual genes. To learn the complete nucleotide order for the anthrax bacterium, Bacillus anthracis, in 1999 NIAID and other government agencies provided funding to The Institute for Genomic Research (TIGR) in Rockville, Md., to sequence the Ames strain. That strain, contrary to its name, was isolated from a Texas cow in 1981 and has been a staple of anthrax research in many laboratories. In the recent study, scientists from TIGR and Northern Arizona University compared the information gained from the Ames sequence with the whole genome sequence of the Florida anthrax isolate.

Led by TIGR's Timothy Read, Ph.D., Steven Salzberg, Ph.D., and Claire Fraser, Ph.D., the researchers determined many areas of genetic variability between the two bacteria. By screening other known anthrax isolates for differences in those regions, the investigators confirmed previous reports that the Florida B. anthracis isolate was derived from the Ames strain and narrowed down its origins to a defined Ames lineage. In addition to the original 1981 strain, only one other Ames isolate has been reported, from a Texas goat in 1997. By analyzing the newly discovered regions of B. anthracis DNA variability, the researchers determined the Florida strain is derived from the original isolate, not the 1997 goat strain. Their study also suggests the Florida strain had not been genetically modified.

The study does not pinpoint the exact origin of the Florida strain, however, and does not reveal great differences between the original Ames isolate and the bacteria obtained from the Florida attacks. Therefore, although the paper shows that whole-genome sequencing can distinguish between two related isolates, it does not provide a broad set of genetic markers for analyzing different anthrax strains in nature. That was expected, according to Dr. Read, because the two bacteria studied are of the same strain. "It's like taking two first cousins from a remote village, determining their differences, and then trying to differentiate the whole human race based on those differences," he explains. To fully describe B. anthracis in nature, he continues, researchers need to examine more distantly related strains to collect the full component of genetic differences.

To accomplish that task, NIAID has provided additional funding to TIGR, in collaboration with Northern Arizona University, for an expanded, comprehensive genomic analysis of at least 14 B. anthracis strains and closely related bacteria. TIGR will sequence select bacteria to provide a database of genomic information that can be used to distinguish among different strains and to monitor any changes that may appear in the bacterial genome. The database will also help researchers learn more about the genetic variability that causes differences in the biological properties of individual strains.

NIAID's B. anthracis sequencing efforts have developed from the Institute's longstanding commitment to microbial genomics, a commitment that has expanded along with a renewed focus on biodefense. Genomic analysis is a cornerstone of NIAID's recently published biodefense research agenda, and scientists have already begun deciphering the genetic blueprints of the microbes that cause such potential bioterror threats as plague, brucellosis, and epidemic typhus. In late 2001, NIAID established the Pathogen Functional Genomics Research Center at TIGR to serve as an information and reagent resource for scientists studying microbial genomics.

The wealth of information obtained from genomic studies will provide a framework for identifying novel and specific targets for new drugs or vaccines to battle infections from both naturally occurring microbes and potential biological attacks. Genome sequences will also lead to highly specific methods for quickly detecting and identifying different pathogens, a critical need for defense against bioterrorism.

Reference: TD Read et al. Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science Express online, May 9, 2002.

Press releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

NIAID is a component of the National Institutes of Health (NIH). NIAID supports basic and applied research to prevent, diagnose, and treat infectious and immune-mediated illnesses, including HIV/AIDS and other sexually transmitted diseases, illness from potential agents of bioterrorism, tuberculosis, malaria, autoimmune disorders, asthma and allergies.


Story Source:

The above story is based on materials provided by NIH/National Institute Of Allergy And Infectious Diseases. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute Of Allergy And Infectious Diseases. "Researchers Unravel Anthrax Genomes." ScienceDaily. ScienceDaily, 10 May 2002. <www.sciencedaily.com/releases/2002/05/020510075717.htm>.
NIH/National Institute Of Allergy And Infectious Diseases. (2002, May 10). Researchers Unravel Anthrax Genomes. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2002/05/020510075717.htm
NIH/National Institute Of Allergy And Infectious Diseases. "Researchers Unravel Anthrax Genomes." ScienceDaily. www.sciencedaily.com/releases/2002/05/020510075717.htm (accessed July 22, 2014).

Share This




More Plants & Animals News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
San Diego Zoo Welcomes New, Rare Rhino Calf

San Diego Zoo Welcomes New, Rare Rhino Calf

Reuters - US Online Video (July 21, 2014) An endangered black rhino baby is the newest resident at the San Diego Zoo. Sasha Salama reports. Video provided by Reuters
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins