Featured Research

from universities, journals, and other organizations

Rutgers Geneticists Discover Probable Causes Of Hybrid Plant Vigor

Date:
June 12, 2002
Source:
Rutgers, The State University Of New Jersey
Summary:
Agricultural breeders have long observed that when plants or animals from different strains are interbred, the offspring tend to be stronger, healthier or generally more fit than either of their parents, although no one knew why this occurred. Now plant geneticists investigating the maize (corn) genome at Rutgers' Waksman Institute of Microbiology have discovered a possible explanation for this phenomenon, known as heterosis or hybrid vigor.

NEW BRUNSWICK/PISCATAWAY, N.J. – Agricultural breeders have long observed that when plants or animals from different strains are interbred, the offspring tend to be stronger, healthier or generally more fit than either of their parents, although no one knew why this occurred. Now plant geneticists investigating the maize (corn) genome at Rutgers' Waksman Institute of Microbiology have discovered a possible explanation for this phenomenon, known as heterosis or hybrid vigor.

Related Articles


The Rutgers findings, presented by research associate Huihua Fu and Professor Hugo K. Dooner in the June 11 edition of the Proceedings of the National Academy of Sciences, have important implications for the understanding of plant genetics as well as applications for improving agriculture.

"A clearer understanding of the basis of heterosis could help us develop new, more productive lines of corn or other plants," said Dooner.

The scientists began by taking a region of the maize genome and sequencing it, mapping the way the genetic material is laid out. To their surprise, when they sequenced the same region from another strain of maize, "everything was different," Dooner reported.

Some of the genes from the first strain seemed to be missing from the second, yet the characteristics the genes controlled were still being expressed; that is, their effects were still being observed in the plants themselves. The scientists concluded that closely related genes (known as members of a gene family) that affect the plant in similar ways must be located elsewhere in the maize's genetic material.

"This is an important finding," said Dooner. "If you have two members of a gene family but expressing themselves in two different tissues, then a crossbred plant could contain both of the genes and may therefore be better off."

This is particularly true under stressful environmental conditions where the offspring would be better equipped to respond to stress.

"That may well be the real basis for hybrid vigor," said Dooner.

Conversely, Fu and Dooner found that inbreeding these hybrids -- that is, breeding an individual with others from the same stock -- resulted in a reduced number of gene family members.

"Ultimately, this yields inbreeding depression, which is the other side of the coin, where you have less healthy offspring," said Dooner.

Agricultural breeders have historically developed most of their hybrids through trial and error processes, but they have gained an understanding of what it takes to create vigorous lines. With the revolution in genomics, Dooner observed, molecular biologists have begun to team up with the breeders. They are looking at the DNA, the molecular composition of their lines, trying to predict the performance of hybrids as they follow easily observed genes or molecular markers through generations.

"Now they can also take a different look at heterosis," said Dooner. "Maybe there are gene families that should be followed together. It could be a pretty major undertaking but with new sophisticated analyses looking at tens of thousands of genes at a time, it may be possible."


Story Source:

The above story is based on materials provided by Rutgers, The State University Of New Jersey. Note: Materials may be edited for content and length.


Cite This Page:

Rutgers, The State University Of New Jersey. "Rutgers Geneticists Discover Probable Causes Of Hybrid Plant Vigor." ScienceDaily. ScienceDaily, 12 June 2002. <www.sciencedaily.com/releases/2002/06/020612072701.htm>.
Rutgers, The State University Of New Jersey. (2002, June 12). Rutgers Geneticists Discover Probable Causes Of Hybrid Plant Vigor. ScienceDaily. Retrieved March 6, 2015 from www.sciencedaily.com/releases/2002/06/020612072701.htm
Rutgers, The State University Of New Jersey. "Rutgers Geneticists Discover Probable Causes Of Hybrid Plant Vigor." ScienceDaily. www.sciencedaily.com/releases/2002/06/020612072701.htm (accessed March 6, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, March 6, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Giant Panda Goes Walkabout in Southwest China

Giant Panda Goes Walkabout in Southwest China

AFP (Mar. 6, 2015) — A giant panda goes walkabout alone at night in southwest China. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Lack of Snow Pushes Alaska Sled Dog Race North

Lack of Snow Pushes Alaska Sled Dog Race North

AP (Mar. 6, 2015) — A shortage of snow has forced Alaska&apos;s Iditarod Trail Sled Dog Race to move 300 miles north to Fairbanks. The ceremonial start through downtown Anchorage will take place this weekend, using snow stockpiled earlier this winter. (March 6) Video provided by AP
Powered by NewsLook.com
Praying Mantis Looks Long Before It Leaps

Praying Mantis Looks Long Before It Leaps

Reuters - Innovations Video Online (Mar. 5, 2015) — Slowed-down footage of the leaps of praying mantises show the insect&apos;s extraordinary precision, say researchers. Video provided by Reuters
Powered by NewsLook.com
Octopus Grabs Camera and Turns It Around On Photographer

Octopus Grabs Camera and Turns It Around On Photographer

Buzz60 (Mar. 5, 2015) — A photographer got the shot of a lifetime, or rather an octopus did, when it grabbed the camera and turned it around to take an amazing picture of the photographer. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins