Featured Research

from universities, journals, and other organizations

Geneticists Show Ripple Effects Of Gene Mutations

Date:
September 9, 2003
Source:
North Carolina State University
Summary:
When a plane arrives late to an airport, it affects more than just the frustrated passengers on the tardy plane – the ripple effects could throw the entire day's timetable off schedule. Similarly, in a new study, North Carolina State University geneticists have found that changes to genes regulating olfactory behavior in the fruit fly Drosophila melanogaster, a popular insect model for genetics, have far greater implications than previously appreciated.

When a plane arrives late to an airport, it affects more than just the frustrated passengers on the tardy plane – the ripple effects could throw the entire day's timetable off schedule.

Similarly, in a new study, North Carolina State University geneticists have found that changes to genes regulating olfactory behavior in the fruit fly Drosophila melanogaster, a popular insect model for genetics, have far greater implications than previously appreciated.

The study is presented in a paper published in the Sept. 7 online edition of Nature Genetics.

Dr. Robert Anholt, professor of zoology and genetics, director of NC State's Keck Center for Behavioral Biology and the paper's lead author, said that in the study of how genes affect behavior, the days of thinking about genes in a linear fashion are over.

"In the past, scientists would make a mutation – or a change in the genetic information – in a gene, observe the effect on behavior and say that the particular gene is essential for a particular behavior," he said. "But when you perturb a gene, you do not just perturb a gene. You create, instead, an effect like the ripples produced when you throw a pebble into a pond. We need to think in terms of networks that generate behavior."

The study breaks new ground because it enabled the scientists to quantify the extent of the ripples in the genome that affect behavior, Anholt said.

In previous studies, the scientists introduced little pieces of DNA, or transposons, randomly into the genome. "If the transposons insert in a regulatory region of a gene, or inside a gene, they disrupt the function of the gene," Anholt said.

Anholt's lab studied olfactory behavior because it can be readily measured and is essential for survival. The investigators isolated a series of smell-impaired flies that were genetically identical but with one particular disrupted gene, and showed enhanced effects when these genes interacted.

"We were able to place them into a network of genetic interactions which provided us with a little view of how genes might work together to determine behavior. Imagine that you are putting together pieces of a puzzle and there comes a moment when you get an inkling of what the final picture might look like," Anholt said.

In the study published in Nature Genetics, the scientists took five genes involved in olfactory behavior in Drosophila melanogaster, extracted the RNA from these five lines and compared their transcriptomes, or all the RNA, of males and females separately. It was important for this study to use a model organism that can be highly inbred so that all individuals are genetically identical. Equally important was the use of sophisticated statistical analyses applied by study co-author Dr. Trudy Mackay, William Neal Reynolds professor of genetics at NC State.

"If we make a perturbation in one gene by introducing a transposon, what happens to the rest of the transcriptome? That's the question we asked," Anholt said. "It turns out that the genomic perturbations arising from a single insertion are substantial. With this experiment, we could see how many genes were perturbed when we mutated one gene, but we could also look at the overlap of the ripples."

In addition, the researchers were able to identify the numbers of male- or female-specific genes that were affected.

Finally, in what Anholt called the "tour de force" of the study, the researchers attempted to find whether genes in the ripples actually affect olfactory behavior.

To address the issue, the researchers went to the Drosophila stock center and its collection of mutants and used a genetic method, pioneered by Mackay, called quantitative complementation tests.

"Two-thirds of the genes within ripples resulting from the smell-impaired mutations themselves affected olfactory behavior. This means that the interactions that we see in the transcriptome mirror the genetic interactions that we see at the behavioral level. It also shows that this approach is a very good strategy for large-scale gene discovery for behavior."

Anholt says this approach can be applied to any complex trait in any animal with a controlled genetic background.

"In the end, we're trying to find how subtle variations in genes affect behavior, and how genetic networks change in response to the environment and during development and evolution," he said.

The study was done in collaboration with Syngenta's Torrey Mesa Research Institute, and the W.M. Keck Foundation and the National Institutes of Health supported the research.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Cite This Page:

North Carolina State University. "Geneticists Show Ripple Effects Of Gene Mutations." ScienceDaily. ScienceDaily, 9 September 2003. <www.sciencedaily.com/releases/2003/09/030909070327.htm>.
North Carolina State University. (2003, September 9). Geneticists Show Ripple Effects Of Gene Mutations. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2003/09/030909070327.htm
North Carolina State University. "Geneticists Show Ripple Effects Of Gene Mutations." ScienceDaily. www.sciencedaily.com/releases/2003/09/030909070327.htm (accessed April 19, 2014).

Share This



More Plants & Animals News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins