Featured Research

from universities, journals, and other organizations

Biofilm Antibiotic Resistance May Be Susceptible To Genetic Approach

Date:
November 20, 2003
Source:
Dartmouth Medical School
Summary:
Biofilms, slimy clusters of bacteria that are resistant to antibiotics, may have a genetic chink in their armor that could be exploited to combat the infections they cause. A study led by Dartmouth Medical School (DMS) researchers used a genetic-based approach to begin to understand how biofilms can withstand antibacterial treatments.

HANOVER, NH -- Biofilms, slimy clusters of bacteria that are resistant to antibiotics, may have a genetic chink in their armor that could be exploited to combat the infections they cause. A study led by Dartmouth Medical School (DMS) researchers used a genetic-based approach to begin to understand how biofilms can withstand antibacterial treatments.

The results of the study, published in the November 20 issue of Nature, provide an innovative model for the investigation of biofilms that may lead to the development of new methods to hamper their resilience. "We are beginning to get at some of the mechanisms that might be important to understanding the antibiotic resistance of biofilms, which is the first step in the long journey to developing a treatment, " said lead author Dr. George O'Toole, assistant professor of microbiology and immunology at DMS.

Biofilms are complex communities of bacterial cells that can survive various environmental stresses including the presence of antibiotics. These populations can form on industrial equipment, medical implants, teeth (plaque) and internal organs, and are estimated to be involved in 65 percent of human bacterial infections, according to the Centers for Disease Control and Prevention. Biofilms are of interest to those who study periodontal disease, pneumonias associated with cystic fibrosis, and the "earache" infections of the middle ear.

Conventional antibiotic therapy, usually effective against free-floating bacteria, is frequently ineffective once pathogens have formed biofilms: these surface-attached communities are up to 1,000-times more resistant to antibiotics.

The Dartmouth-led study questions prior assumptions that the structure itself confers resilience--and points to the possibility that one day, clinicians may be able to program the bacteria to be less resistant to antibiotics. "This is the first time anyone has used an unbiased genetic approach to understand why biofilms are resistant to antibiotics," said principal author Thien-Fah Mah, a postdoctoral fellow at DMS.

"One of the most vexing problems in biofilms is that when microbes band together in a biofilm they are remarkably protected from killing by antibiotics, biocides and disinfectants," said study co-author Phil Stewart, deputy director of the Center for Biofilm Engineering at Montana State University-Bozeman. "And of course we'd like an explanation for that."

Using a common pathogen, Pseudomonas aeruginosa, the researchers developed a genetic screen to look for mutant strains that were more sensitive to antibiotics. "The idea was to let the bacteria tell us which genes were important," said Dr. Mah. "Using this approach, we were able to identify a mutant of P. aeruginosa that, while still capable of forming biofilms, did not develop the high-level biofilm-resistance to three classes of antibiotics."

One antibiotic with increased success against the mutant biofilms described in this study is tobramycin, commonly used to treat patients with cystic fibrosis (CF), a disease where biofilms are thought to develop in patients' lungs. "This is a proof of concept that there may be a possibility of identifying small molecules to attack biofilm resistance, thereby rendering these microbial communities more susceptible to treatment with conventional antibiotic therapy," said Dr. O'Toole.

The research was funded in part by the National Science Foundation (NSF), NIH, the Canadian Cystic Fibrosis Foundation, Microbia, Inc. and the Pew Charitable Trusts.


Story Source:

The above story is based on materials provided by Dartmouth Medical School. Note: Materials may be edited for content and length.


Cite This Page:

Dartmouth Medical School. "Biofilm Antibiotic Resistance May Be Susceptible To Genetic Approach." ScienceDaily. ScienceDaily, 20 November 2003. <www.sciencedaily.com/releases/2003/11/031120074501.htm>.
Dartmouth Medical School. (2003, November 20). Biofilm Antibiotic Resistance May Be Susceptible To Genetic Approach. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2003/11/031120074501.htm
Dartmouth Medical School. "Biofilm Antibiotic Resistance May Be Susceptible To Genetic Approach." ScienceDaily. www.sciencedaily.com/releases/2003/11/031120074501.htm (accessed August 23, 2014).

Share This




More Plants & Animals News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Endangered Red Wolves Face Uncertain Future

Endangered Red Wolves Face Uncertain Future

AP (Aug. 22, 2014) A federal judge temporarily banned coyote hunting to save endangered red wolves, but local hunters say that the wolf preservation program does more harm than good. Meanwhile federal officials are reviewing its wolf program in North Carolina. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins