Featured Research

from universities, journals, and other organizations

Study Suggests Life On Earth Sprang From Borax Minerals

Date:
January 9, 2004
Source:
University Of Florida
Summary:
Researchers at the University of Florida say they have shown that minerals were key to some of the initial processes that formed life on Earth. Specifically, a borax-containing mineral known as colemanite helps convert organic molecules found in interstellar dust clouds into a sugar, known as ribose, central to the genetic material called RNA.

GAINESVILLE, Fla. --- Researchers at the University of Florida say they have shown that minerals were key to some of the initial processes that formed life on Earth. Specifically, a borax-containing mineral known as colemanite helps convert organic molecules found in interstellar dust clouds into a sugar, known as ribose, central to the genetic material called RNA. This announcement provides a key step toward solving the 3-billion-year-old mystery of how life on Earth began. The findings will appear in Friday's issue of the journal Science. Steven Benner, Alonso Ricardo, Matthew Carrigan and Alison Olcott built on a famous experiment done 50 years earlier by Stanley Miller that is found in many textbooks. In 1953, Miller showed that electric sparks in a primitive atmosphere made amino acids, the building blocks of proteins.

Miller's experiment failed to identify sugars that were needed for genetic material, however. "The sugar ribose can be formed from interstellar precursors under prebiotic conditions," said Benner, who led the research funded by NASA, the National Science Foundation and The Agouron Institute in Pasadena, Calif. "But ribose is too unstable to survive under Miller's conditions." Ribose, like most sugars, turns into tar if not handled carefully. "It is like baking a cake too long," said Benner, a UF distinguished professor of chemistry and anatomy and cell biology. In 1995, Miller gave up trying to make ribose prebiotically, writing: "The first genetic material could not have contained ribose or other sugars because of their instability."

Benner, who also is a member of NASA's Astrobiology Institute, did the first experiments as an instructor at an international geobiology course last summer funded by the Agouron Institute and held at the University of Southern California Wrigley Institute for Environmental Studies. "We asked two questions. First, what simple organic molecules might have been present on early Earth as starting materials to form ribose? Then, what might have been present on early Earth to capture ribose and keep it from burning up like overcooked cake?" Benner said.

To identify simple organic molecules that might be the starting materials, Benner turned to compounds known to exist in interstellar dust, such as formaldehyde, used to preserve tissue. "Formaldehyde may not seem to be a good starting point for the life that we know," he said. "But it is simple. With only one carbon atom, one oxygen atom and two hydrogen atoms, there is a lot of formaldehyde to work with in the cosmos."

Benner and his team showed that formaldehyde, with other interstellar compounds, could form ribose and other sugars when treated in the presence of base materials such as lime, a material used to adjust the pH level of lawns, among other things. Lime was effective, but the ribose decomposed soon after it was formed.

Recognizing that ribose had a particular chemical structure that allowed it to bind to minerals containing the element boron, they turned to another substance called colemanite. "Colemanite is a mineral containing borate found in Death Valley," he said. "Without it, ribose turns into a brown tar. With it, ribose and other sugars emerge as clean products." Benner then showed similar reactions with other borate minerals, including ulexite and kernite, which is more commonly known as borax.

Benner and his team are the first researchers to succeed in making significant amounts of ribose under these early conditions.

Joseph Piccirilli, a biological chemist at the Howard Hughes Medical Institute and the University of Chicago, said Benner's work "has simplicity and brilliance."

"Organic chemists have long known that borate complexes with compounds like ribose," Piccirilli said, "and prebiotic scientists have long believed that minerals on the early Earth played an important role in the origin of life." Until now, "no one has put the two ideas together," he said.

"We are not claiming that this is how life started," Benner stressed. "We are saying that we have demonstrated a recipe to make a key part of life without any biochemical machinery. The more recipes of this type that can be found, the more clues we have about how life could have actually gotten started on the primitive Earth."

While best classified as basic science, the work has practical biological and medical value. "Curiously, thinking about how life originated and what form it might take on other planets helps us design new tools for disease diagnostics and therapy," Benner said. Diagnostic tools enabled by Benner's work seeking alternative life forms are used today in the clinic to monitor the load of the viruses that cause AIDS and hepatitis C.

The work also complements other research Benner is conducting that focuses on ancient forms of life on Earth. In a September report in Nature, Benner and his collaborators deduced the structure of a protein found in a bacterium that lived several billion years ago and resurrected the ancient protein. By studying it in the laboratory, the group inferred the ancient bacteria lived in a hot spring at about 150 degrees Fahrenheit.

With the prebiotic experiments, Benner said, "we are working forward in time, from the origin of the planet to the first life. With experiments with ancient proteins, we work backwards in time, from the modern world to the most primitive of bacteria." The group's goal, he said, is to have the two meet in the middle.


Story Source:

The above story is based on materials provided by University Of Florida. Note: Materials may be edited for content and length.


Cite This Page:

University Of Florida. "Study Suggests Life On Earth Sprang From Borax Minerals." ScienceDaily. ScienceDaily, 9 January 2004. <www.sciencedaily.com/releases/2004/01/040109064945.htm>.
University Of Florida. (2004, January 9). Study Suggests Life On Earth Sprang From Borax Minerals. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2004/01/040109064945.htm
University Of Florida. "Study Suggests Life On Earth Sprang From Borax Minerals." ScienceDaily. www.sciencedaily.com/releases/2004/01/040109064945.htm (accessed October 21, 2014).

Share This



More Earth & Climate News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
How Detroit's Money Woes Led To U.N.-Condemned Water Cutoffs

How Detroit's Money Woes Led To U.N.-Condemned Water Cutoffs

Newsy (Oct. 20, 2014) The United Nations says water is a human right, but should it be free? Detroit has cut off water to residents who can't pay, and the U.N. isn't happy. Video provided by Newsy
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
White Rhino's Death In Kenya Means Just 6 Are Left

White Rhino's Death In Kenya Means Just 6 Are Left

Newsy (Oct. 20, 2014) Suni, a rare northern white rhino at Ol Pejeta Conservancy, died Friday. This, as many media have pointed out, leaves people fearing extinction. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins