Featured Research

from universities, journals, and other organizations

Getting A Whiff Of Speciation By Reinforcement

Date:
December 2, 2004
Source:
Public Library Of Science
Summary:
A study by Daniel Ortiz-Barrientos and colleagues focuses on the genetic underpinnings of mate discrimination in Drosophila. They identify two loci that influence the likelihood that a female will choose to mate with a conspecific male, rather than one of a closely related species.

Creating a new species is a bit like climbing a greased flagpole—it's hard to get started and even harder to keep going. Random genetic variations may introduce slight differences between two groups but, without some means to keep them apart, sexual interbreeding will quickly remix the genes and obliterate the differences. Accidents of geography—the rising of mountains or a course-changing river, for instance—can provide physical isolation, which then enables genetic divergence through the accumulation of mutations, either through natural selection or genetic drift.

In contrast, speciation without geographic separation relies on the direct action of natural selection to complete the speciation process by strengthening behavioral differences, a process called reinforcement. One of the most powerful means of completing speciation is through the evolution of mate discrimination.

A study by Daniel Ortiz-Barrientos and colleagues focuses on the genetic underpinnings of mate discrimination in Drosophila. They identify two loci that influence the likelihood that a female will choose to mate with a conspecific male, rather than one of a closely related species.

Drosophila pseudoobscura and D. persimilis exist together along the west coast of the United States (sympatry), but separately elsewhere (allopatry). When together, they hybridize and produce sterile males. While D. pseudoobscura males will court females of both species, females prefer conspecific males. This female preference is stronger in sympatric females, an enhancement that presumably evolved by the direct action of natural selection to prevent females from wasting their reproductive efforts producing sterile sons. This variation allowed the authors to conduct a series of genetic crosses among flies of the same species but from different locations. Because the daughters of discriminating D. pseudoobscura females were just as discriminating as their mothers, Ortiz-Barrientos and colleagues concluded that female mating discrimination was inherited as a dominant trait. Further crosses showed that genes responsible for female preference were on the X and fourth chromosomes, and high-resolution mapping refined their locations sufficiently to allow the identification of likely candidate genes. While more work remains to be done, the most promising genes in both regions appear to be involved with olfaction. The fact that one of them, CG13982, is known to up-regulate the other, bru-3, strengthens the case that these are indeed promising candidates.

According to their findings, the authors propose a novel model of mating discrimination in D. pseudoobscura based on the combined response to auditory and olfactory cues. The first of these two layers, weak, or “basal” mating discrimination, has previously been associated with a set of traits for acoustic recognition and mapped to chromosomal regions that are inverted between the two species. Such inversions prevent recombination from purging alleles, thereby contributing to hybrid male sterility. As a consequence, when these species interbreed, they inexorably produce sterile males. The second layer, elucidated in the current study, is “reinforced” mating discrimination, which appears to be related to olfactory cues. This additional system of discrimination helps the first layer to fully eliminate the inevitable cost of producing sterile males. Once the nascent species have started up that slippery pole, reinforced discrimination could provide the traction needed to reach its top.

###

Citation: Ortiz-Barrientos D, Counterman BA, Noor MAF (2004) The Genetics of Speciation by Reinforcement. PLoS Biol 2(12): e416.


Story Source:

The above story is based on materials provided by Public Library Of Science. Note: Materials may be edited for content and length.


Cite This Page:

Public Library Of Science. "Getting A Whiff Of Speciation By Reinforcement." ScienceDaily. ScienceDaily, 2 December 2004. <www.sciencedaily.com/releases/2004/11/041123114452.htm>.
Public Library Of Science. (2004, December 2). Getting A Whiff Of Speciation By Reinforcement. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2004/11/041123114452.htm
Public Library Of Science. "Getting A Whiff Of Speciation By Reinforcement." ScienceDaily. www.sciencedaily.com/releases/2004/11/041123114452.htm (accessed July 24, 2014).

Share This




More Plants & Animals News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com
CDC Head Concerned About a Post-Antibiotic Era

CDC Head Concerned About a Post-Antibiotic Era

AP (July 22, 2014) Sounding alarms about the growing threat of antibiotic resistance, CDC Director Tom Frieden warned Tuesday if the global community does not confront the problem soon, the world will be living in a devastating post-antibiotic era. (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins