Featured Research

from universities, journals, and other organizations

'Signal' Identified That Enables Malarial Parasites To Target Blood Cells

Date:
December 23, 2004
Source:
Northwestern University
Summary:
Northwestern University researchers have identified a key molecular "signal" that allows malarial parasites to release virulence proteins inside human red blood cells.

Northwestern University researchers have identified a key molecular "signal" that allows malarial parasites to release virulence proteins inside human red blood cells.

The investigators, led by Kasturi Haldar and N. Luisa Hiller, also found that the process by which the malarial parasite remodels red blood cells is far more complex than scientists previously had realized.

Haldar is Charles E. and Emma H. Morrison Professor in Pathology and professor of microbiology-immunology and Hiller a sixth-year student in the Integrated Graduate Program in the Life Sciences at Northwestern University Feinberg School of Medicine.

Other key researchers on this study were Souvik Bhattacharjee; Christiaan van Ooij; Konstantinos Liolios; Travis Harrison; and Carlos Estrano.

Findings from the Northwestern study were published in the Dec. 10 issue of the journal Science.

Malaria is a blood-borne illness transmitted by mosquitoes. Forty percent of the world's population lives at risk for infection, and between 200 and 300 million people are afflicted each year, particularly in underdeveloped and impoverished tropical and sub-Saharan countries.

Plasmodium faciparum is the most virulent form of the four human malarial parasite species, killing over 1 million children each year, and is responsible for 25 percent of infant mortality in Africa, according to the World Health Organization.

Following invasion of human red blood cells – the "blood stage" of malaria – P. falciparum exports proteins that modify the properties of the host red blood cell membrane, are required for parasite survival and are responsible for fatal pathologies such as cerebral – or "brain" – malaria as well as placental malaria.

It is during the "blood stage" of malaria when symptoms of malaria occur. These symptoms include fever and flu-like symptoms, such as chills, headache, muscle aches and fatigue, as well as complex disease pathologies of cerebral malaria (leading to coma), metabolic acidosis and anemia. Immunity is slow to develop, and left untreated, malaria may be fatal, taking its greatest toll in children and pregnant women.

How the malaria parasite targets proteins to the host red blood cell was essentially unknown. Using cutting-edge bioinformatic techniques combined with functional studies, the researchers identified a "signal" on exported parasite proteins that is required for their secretion into the host.

This signal is present on more than 320 proteins, which represents approximately 6 percent of total proteins encoded in the P. falciparum genome, indicating that modification of this export signal not only established a major host-targeting pathway but also enabled the recognition of a wide range of proteins (a "secretome") that present high-value candidate effectors of disease and infection.

Results revealed the power of functional informatics to lead scientists from the tip of the iceberg (five to 10 parasite proteins exported to the erythrocyte) to the global complexity of infection (where the parasite is exporting dozens of proteins).

Remarkably, 91 of the secretome proteins share few or no similarities with known cellular proteins, emphasizing novel and complex ways in which the malarial parasite establishes infection in human red blood cells.

These proteins represent a vastly expanded pool of major candidate targets to block blood stage infection as well as complex disease pathologies associated with acute and severe malaria.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "'Signal' Identified That Enables Malarial Parasites To Target Blood Cells." ScienceDaily. ScienceDaily, 23 December 2004. <www.sciencedaily.com/releases/2004/12/041220030213.htm>.
Northwestern University. (2004, December 23). 'Signal' Identified That Enables Malarial Parasites To Target Blood Cells. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2004/12/041220030213.htm
Northwestern University. "'Signal' Identified That Enables Malarial Parasites To Target Blood Cells." ScienceDaily. www.sciencedaily.com/releases/2004/12/041220030213.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins