Featured Research

from universities, journals, and other organizations

'Signal' Identified That Enables Malarial Parasites To Target Blood Cells

Date:
December 23, 2004
Source:
Northwestern University
Summary:
Northwestern University researchers have identified a key molecular "signal" that allows malarial parasites to release virulence proteins inside human red blood cells.

Northwestern University researchers have identified a key molecular "signal" that allows malarial parasites to release virulence proteins inside human red blood cells.

Related Articles


The investigators, led by Kasturi Haldar and N. Luisa Hiller, also found that the process by which the malarial parasite remodels red blood cells is far more complex than scientists previously had realized.

Haldar is Charles E. and Emma H. Morrison Professor in Pathology and professor of microbiology-immunology and Hiller a sixth-year student in the Integrated Graduate Program in the Life Sciences at Northwestern University Feinberg School of Medicine.

Other key researchers on this study were Souvik Bhattacharjee; Christiaan van Ooij; Konstantinos Liolios; Travis Harrison; and Carlos Estrano.

Findings from the Northwestern study were published in the Dec. 10 issue of the journal Science.

Malaria is a blood-borne illness transmitted by mosquitoes. Forty percent of the world's population lives at risk for infection, and between 200 and 300 million people are afflicted each year, particularly in underdeveloped and impoverished tropical and sub-Saharan countries.

Plasmodium faciparum is the most virulent form of the four human malarial parasite species, killing over 1 million children each year, and is responsible for 25 percent of infant mortality in Africa, according to the World Health Organization.

Following invasion of human red blood cells – the "blood stage" of malaria – P. falciparum exports proteins that modify the properties of the host red blood cell membrane, are required for parasite survival and are responsible for fatal pathologies such as cerebral – or "brain" – malaria as well as placental malaria.

It is during the "blood stage" of malaria when symptoms of malaria occur. These symptoms include fever and flu-like symptoms, such as chills, headache, muscle aches and fatigue, as well as complex disease pathologies of cerebral malaria (leading to coma), metabolic acidosis and anemia. Immunity is slow to develop, and left untreated, malaria may be fatal, taking its greatest toll in children and pregnant women.

How the malaria parasite targets proteins to the host red blood cell was essentially unknown. Using cutting-edge bioinformatic techniques combined with functional studies, the researchers identified a "signal" on exported parasite proteins that is required for their secretion into the host.

This signal is present on more than 320 proteins, which represents approximately 6 percent of total proteins encoded in the P. falciparum genome, indicating that modification of this export signal not only established a major host-targeting pathway but also enabled the recognition of a wide range of proteins (a "secretome") that present high-value candidate effectors of disease and infection.

Results revealed the power of functional informatics to lead scientists from the tip of the iceberg (five to 10 parasite proteins exported to the erythrocyte) to the global complexity of infection (where the parasite is exporting dozens of proteins).

Remarkably, 91 of the secretome proteins share few or no similarities with known cellular proteins, emphasizing novel and complex ways in which the malarial parasite establishes infection in human red blood cells.

These proteins represent a vastly expanded pool of major candidate targets to block blood stage infection as well as complex disease pathologies associated with acute and severe malaria.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "'Signal' Identified That Enables Malarial Parasites To Target Blood Cells." ScienceDaily. ScienceDaily, 23 December 2004. <www.sciencedaily.com/releases/2004/12/041220030213.htm>.
Northwestern University. (2004, December 23). 'Signal' Identified That Enables Malarial Parasites To Target Blood Cells. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2004/12/041220030213.htm
Northwestern University. "'Signal' Identified That Enables Malarial Parasites To Target Blood Cells." ScienceDaily. www.sciencedaily.com/releases/2004/12/041220030213.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins