Featured Research

from universities, journals, and other organizations

Plants, Animals Share Molecular Growth Mechanisms

Date:
March 3, 2005
Source:
Purdue University
Summary:
A newly discovered plant protein complex that apparently switches on plants' growth machinery, has opened a scientific toolbox to learn about both plant and animal development, according Purdue University scientists.

Malfunctioning genes that affect plant growth and development cause distortion in tiny hairs, called trichomes, that are found on most cells. Compared with normal plants, the trichome branch lengths are shorter and slightly twisted, and the base of the trichome is abnormally elongated and swollen.
Credit: Photo courtesy of Dan Szymanski

WEST LAFAYETTE, Ind. - A newly discovered plant protein complex that apparently switches on plants' growth machinery, has opened a scientific toolbox to learn about both plant and animal development, according Purdue University scientists.

The protein complex triggers communication between molecules along a pathway that leads to the creation of long protein strings, called actin filaments, that are necessary for cellular growth, said Dan Szymanski, agronomy associate professor and lead author of the study. Knowledge of the biochemical reactions involved in this process eventually may allow researchers to design plants better able to protect themselves from insects and disease.

"These genes and their proteins are required for normal development and for normal cell-to-cell adhesion," Szymanski said. "They affect the growth of the whole plant and also the shape and size of types of cells in the plant."

Results of the study are published in the February issue of the journal The Plant Cell.

"Perhaps by learning about this pathway for actin filament formation, we can engineer plant cells to grow in different ways or alter how cells respond to external stimuli so they can defend themselves against insect or fungal attacks," Szymanski said.

A protein complex known as Actin Related Protein 2/3 (ARP2/3) is a cellular machine that controls formation of actin filaments, which are important for cell growth and movement. Actin filaments organize the inside of the cell and allow it to grow, and they determine where certain structures in a cell are positioned and how plants respond to gravity and light.

Szymanski's team used a deformed version of a common research plant, Arabidopsis thaliana, and specifically looked at small, hairlike structures that exist on most cells. They found that the shape and size of these hairs, or trichomes, readily show when genes affecting actin filaments are askew and causing altered growth.

The researchers previously had learned that a large protein complex, known as WAVE, activated ARP2/3, but they didn't know specifically which WAVE protein was the actual switch. Their latest research showed that a WAVE protein they've dubbed DISTORTED3 (DIS3) turns on APR 2/3, which in turn triggers formation of new, growing actin filaments.

Because some genes have survived through time as multicellular life evolved, they have been conserved in both plants and animals, Szymanski said. So, some of the plant proteins that comprise the ARP2/3 and the WAVE complexes are interchangeable with proteins in animals. Others proteins are not interchangeable, and Szymanski's research team is delving into how this affects the growth process.

"DIS3 has two ends that are common in both plant and animal proteins," he said. "But DIS3 has a very large segment in the middle that is specific to plants. We'd like to know if this section is important and whether it regulates DIS3 or the whole WAVE complex."

For growth and development biochemical processes to proceed normally, activators such as ARP 2/3 are needed to trigger actin filaments' formation and growth, Szymanski said. However, scientists don't know the specific function of certain actin filaments. The molecular tools Szymanski's research team developed will help scientists learn more about these functions in both plants and animals.

The other researchers on this study were Dipanwita Basu and Salah El-Din El-Essal, research assistants; postdoctoral students Jie Le, Chunhua Zhang and Gregore Koliantz; Eileen Malley, laboratory manager, all of the Department of Agronomy; and Shanjin Huang, postdoctoral student, and Christopher Staiger, professor, both of the Department of Biological Sciences. Staiger and Szymanski also are members of the Purdue Motility Group.

The Energy Biosciences Division of the Department of Energy, the USDA National Research Initiative and the Purdue Agricultural Research Program provided funding for this research.


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "Plants, Animals Share Molecular Growth Mechanisms." ScienceDaily. ScienceDaily, 3 March 2005. <www.sciencedaily.com/releases/2005/02/050224121813.htm>.
Purdue University. (2005, March 3). Plants, Animals Share Molecular Growth Mechanisms. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2005/02/050224121813.htm
Purdue University. "Plants, Animals Share Molecular Growth Mechanisms." ScienceDaily. www.sciencedaily.com/releases/2005/02/050224121813.htm (accessed October 1, 2014).

Share This



More Plants & Animals News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) — Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com
Cultural Learning In Wild Chimps Observed For The First Time

Cultural Learning In Wild Chimps Observed For The First Time

Newsy (Oct. 1, 2014) — Cultural transmission — the passing of knowledge from one animal to another — has been caught on camera with chimps teaching other chimps. Video provided by Newsy
Powered by NewsLook.com
Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) — A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Annual Dog Surfing Competition Draws California Crowds

Annual Dog Surfing Competition Draws California Crowds

AFP (Sep. 30, 2014) — The best canine surfers gathered for Huntington Beach's annual dog surfing competition, "Surf City, Surf Dog." Duration: 01:15 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins