Featured Research

from universities, journals, and other organizations

UCR Chemist Part Of Team Identifying New Areas Of Gene Regulation

Date:
May 7, 2005
Source:
University Of California - Riverside
Summary:
Researcher Kangling Zhang at the University of California, Riverside is part of a team that has discovered a new way that yeast governs genetic expression and repression, a finding that could be repeated in cells of other organisms.

Rendering of a Histone.
Credit: Image courtesy of University Of California - Riverside

RIVERSIDE, Calif. -- Researcher Kangling Zhang at the University of California, Riverside is part of a team that has discovered a new way that yeast governs genetic expression and repression, a finding that could be repeated in cells of other organisms.

Related Articles


Zhang, an academic coordinator at the Mass Spectrometry Facility of the Department of Chemistry at UCR, worked with Feng Xu and Michael Grunstein of the Department of Biological Chemistry at the David Geffen School of Medicine at UCLA on a paper titled Acetylation in Histone H3 Globular Domain Regulates Gene Expression in Yeast, which was published today in the journal Cell.

The paper focuses on observations of histones, the proteins that regulate genetic expression and form the major supporting structures housing the cell’s DNA. Histones interacting with each other form a ‘spool’ around which DNA is wrapped in the cell. Grunstein, one of the scientists in the current team, discovered in 1991 that sites of histone acetylation, a modification of the protein, play a fundamental role in the regulation of gene activation and repression.


The key findings of the current paper were the discovery of this acetylation at the core of the histone, rather than at the proteins’ ends, which are where most gene regulation is thought to take place. The team used mass spectrometry to show that acetylation at the core of the histone is associated with gene activation by attracting the protein string known as the SWI/SNI chromatin remodeling complex to the location of acetylation.

“In this paper, we used mass spectrometry to identify a novel acetylation site at the lysine 56 of yeast histone H3,” said Zhang, referring to the previously unknown location of a chemical opening to allow genetic transfers to occur.

“We found acetylation at this site near the entry-exit points of the DNA superhelix as it wraps around the nucleosome is required for recruiting the nucleosome remodeling complex SWI/SNF and so regulates gene activity,” he said.

“We show for the first time that a modification of a histone at the core of the protein, not the end, can regulate genes,” Grunstein added.

The mass spectrometry facility at the UCR’s Department of Chemistry and in the new Physical Sciences building provides super-high sensitivity for research in protein functions and in metabolic profiles of cells. The facility provides service and collaboration not limited to, protein separation, protein identification, sequencing, protein expression level quantification, as well as small molecule structural determination and metabolite identification.

Story Source:

The above story is based on materials provided by University Of California - Riverside. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - Riverside. "UCR Chemist Part Of Team Identifying New Areas Of Gene Regulation." ScienceDaily. ScienceDaily, 7 May 2005. <www.sciencedaily.com/releases/2005/05/050506154737.htm>.
University Of California - Riverside. (2005, May 7). UCR Chemist Part Of Team Identifying New Areas Of Gene Regulation. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2005/05/050506154737.htm
University Of California - Riverside. "UCR Chemist Part Of Team Identifying New Areas Of Gene Regulation." ScienceDaily. www.sciencedaily.com/releases/2005/05/050506154737.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com
Analysis: NTSB Wants Better Black Boxes

Analysis: NTSB Wants Better Black Boxes

AP (Jan. 22, 2015) NTSB investigators recommended Thursday that long-distance passenger planes carry improved technology to allow them to be found more easily in a crash, as well as include enhanced cockpit recording technology. (Jan. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins