Featured Research

from universities, journals, and other organizations

Trio Of Plant Genes Prevent 'Too Many Mouths'

Date:
July 18, 2005
Source:
University Of Washington
Summary:
A signaling pathway required for plants to grow to their normal size appears to have an unexpected dual purpose of keeping the plant from wallpapering itself with too many densely clustered stomata. Understanding the mechanisms that control stomata patterning offers insights into such questions as how plants evolved to protect themselves when they moved from water to land.

Keiko Torii holds a mutated version -- one that's an inch tall and covered densely with microscopic stomata -- and a normal plant of Arabidopsis, a small flowering plant that is widely used as a model organism in plant biology.
Credit: Image courtesy of University of Washington

A signaling pathway required for plants to grow to their normal size appears to have an unexpected dual purpose of keeping the plants from wallpapering themselves with too many densely clustered stomata.

Related Articles


"It's surprising that size and stomata patterning -- both key to plants being able to survive on dry land -- are using the same signaling components," says Jessica McAbee, a University of Washington research associate in biology. She's one co-author of a report in the July 8 issue of Science about work with Arabidopsis, a weed-like member of the crucifer family for which scientists already have a genomic map.

Stomata are microscopic pores on the surface of plants that open to allow plants to take in carbon dioxide from the air for photosynthesis. They close when there is the danger that the plant tissue may lose too much moisture.

"Specialized cells open and close the stomata, much like opening and closing a mouth," says Keiko Torii, UW assistant professor of biology. Stomata too close together can't operate effectively.

Understanding the mechanisms that control stomata patterning offers insights into such questions as how plants evolved to protect themselves when they moved from water to land, Torii says. Even atmospheric scientists are interested in such basic plant biology, given the enormous amount of the greenhouse gas carbon dioxide taken up by the Earth's plants.

Scientists already believed that part of the signaling pathway for stomata production included the receptor-like protein Too Many Mouths, so called because when absent the plant makes too many stomata, or mouths.

Scientists were searching for a single stomata gene that had to be working in concert with Too Many Mouths to get an efficient distribution of stomata, Torii says. No one was considering that more than one gene could be involved, much less three, or that the genes could be serving other purposes, she says.

The UW team of four female scientists serendipitously discovered what appears to be part of the pathway that tempers the production of stomata while studying a trio of genes that code for signaling receptors required for normal plant height.

The scientists were working on a basic understanding of plant growth as part of U.S. Department of Energy and Japanese Science and Technology Agency-funded work about growing plant material, or biomass, suitable for producing fuel. By mutating all three genes -- essentially putting them all out of action -- the researchers got dwarf plants an inch high instead of the normal 1 feet.

Surprisingly the plants also were so densely covered with stomata that most stomata were touching each other.

These genes appear to have roles at two points in the production of stomata. First, they inhibit undifferentiated cells -- those unspecialized cells that have yet to turn into specific cell types -- from making too many stomata and then they repress the development of two guard cells that open and close the stomata pore.

Co-authors of the Science paper besides Torii and McAbee are lead author Elena Shpak, former research associate at the UW and starting this fall as an assistant professor at California State University, Fullerton, and Lynn Pillitteri, a UW research associate in biology.


Story Source:

The above story is based on materials provided by University Of Washington. Note: Materials may be edited for content and length.


Cite This Page:

University Of Washington. "Trio Of Plant Genes Prevent 'Too Many Mouths'." ScienceDaily. ScienceDaily, 18 July 2005. <www.sciencedaily.com/releases/2005/07/050709001954.htm>.
University Of Washington. (2005, July 18). Trio Of Plant Genes Prevent 'Too Many Mouths'. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2005/07/050709001954.htm
University Of Washington. "Trio Of Plant Genes Prevent 'Too Many Mouths'." ScienceDaily. www.sciencedaily.com/releases/2005/07/050709001954.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Florida Might Legalize Black Bear Hunting

Florida Might Legalize Black Bear Hunting

Newsy (Jan. 24, 2015) A string of black bear attacks has Florida officials considering lifting the ban on hunting the animals to control their population. Video provided by Newsy
Powered by NewsLook.com
Ebola Killing Large Portion Of Ape Population

Ebola Killing Large Portion Of Ape Population

Newsy (Jan. 23, 2015) Experts estimate Ebola has wiped out one-third of the world&apos;s gorillas and chimpanzees. Video provided by Newsy
Powered by NewsLook.com
Controversy Shrouds Captive Killer Whale in Miami

Controversy Shrouds Captive Killer Whale in Miami

Reuters - Light News Video Online (Jan. 23, 2015) Activists hope the National Oceanic and Atmospheric Agency (NOAA) will label killer whales endangered, allowing lawyers to sue a Miami aquarium to release an orca into the wild after 44 years. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
‘Healthy’ Foods That Surprisingly Pack on Pounds

‘Healthy’ Foods That Surprisingly Pack on Pounds

Buzz60 (Jan. 23, 2015) Some &apos;healthy&apos; foods are actually fattening. Fitness and nutrition expert John Basedow (@JohnBasedow) shines a light on the sneaky foods like nuts, seeds, granola, trail mix, avocados, guacamole, olive oil, peanut butter, fruit juices and salads that are good for you...but not so much for your waistline. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins