Featured Research

from universities, journals, and other organizations

Hormones And Growth: The Control Of Body Size And Developmental Growth Rate In Fruit Flies

Date:
September 27, 2005
Source:
Cell Press
Summary:
A pair of research papers published this week report findings that increase our understanding of how an organism's body size is determined and how the speed of its development is controlled. In particular, the work sheds light on the molecular and cellular pathways that act to convey information about a growing organism's size, as well as on pathways that use that information to correctly time critical transitional events during development.

Fruit flies.
Credit: George Gilchrist, Clarkson University

A pair of research papers published this week report findings thatincrease our understanding of how an organism's body size is determinedand how the speed of its development is controlled. In particular, thework sheds light on the molecular and cellular pathways that act toconvey information about a growing organism's size, as well as onpathways that use that information to correctly time criticaltransitional events during development.

Related Articles


The two studies are reported in Current Biology online on September22 by Dr. Philip E. Caldwell and colleagues of Rice University and Dr.Christen Mirth and colleagues of the University of Washington.

Previous work had shown that there is a close linkage betweenthe final body size of an organism and the length of its developmentalstages: Elephants are larger and develop more slowly than mice.However, the mechanisms by which body size and developmental rate arecontrolled remain incompletely understood.

Both studies examine the control of larval development in thefruit fly Drosophila. Fruit flies undergo three successive larvalstages and molts before undergoing metaphorphosis and emerging as adultflies. In insects, it was previously found that the release of thehormone ecdysone from an endocrine organ called the prothoracic glandtriggers larval molting and, ultimately, metamorphosis. Thus,researchers have speculated that the timing of ecdysone release iscritical in determining both the final body size and developmental rateof an insect.

In their new work, Philip Caldwell, Magdalena Walkiewicz, andMichael Stern manipulated the timing and amount of ecdysone releaseduring development of the fruit fly. They induced precocious ecdysonerelease by specifically expressing an activated form of the signalingmolecule Ras in the endocrine prothoracic gland. This precociousecdysone release caused flies to develop more rapidly and exhibit amuch smaller body size than normal. In contrast, inhibiting Ras in theprothoracic gland prevented ecdysone release and delayed development,creating flies that are much larger than normal. On the basis of theirfindings, the investigators conclude that Ras activity in theprothoracic gland regulates body size and developmental rate byregulating ecdysone release.

In the second study, Christen Mirth, James W. Truman, and LynnM. Riddiford address how developing flies sense that they have reachedthe proper size to initiate a new phase of development. Their newfindings show that the prothoracic gland'the organ that releasesecdysone'itself acts as a size-sensing tissue. The researchers foundthat by manipulating the growth of specific cells within the gland,they were able to control the timing of metamorphosis and the body sizeof adult flies. They showed that artificial enlargement of theprothoracic gland appeared to cause an overestimation of the larvalflies' overall body size, prompting the initiation of metamorphosisbefore the flies surpassed the minimal viable weight necessary tosurvive pupation. On the basis of their findings, the authors proposethat under normal conditions, growth of prothoracic gland duringdevelopment helps larval flies determine when a critical body weighthas been reached and when metamorphosis should be initiated.

###

Mirth et al.: 'The Role of the Prothoracic Gland in DeterminingCritical Weight for Metamorphosis in Drosophila melanogaster.'Publishing in Current Biology online on September 22, 2005. DOI10.1016/j.cub.2005.09.017 www.current-biology.com.

Caldwell et al.: 'Ras Activity in the Drosophila ProthoracicGland Regulates Body Size and Developmental Rate via Ecdysone Release.'Publishing in Current Biology online on September 22, 2005. DOI10.1016/j.cub.2005.09.011 www.current-biology.com.

The researchers include Christen Mirth, James W. Truman, andLynn M. Riddiford of University of Washington in Seattle. This projectwas funded by the Royalty Research Fund and the Virginia and a PrenticeBloedel Professorship.

The researchers include Philip E. Caldwell, MagdalenaWalkiewicz, and Michael Stern of Rice University in Houston. This workwas supported by a National Institutes of Health grant.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Hormones And Growth: The Control Of Body Size And Developmental Growth Rate In Fruit Flies." ScienceDaily. ScienceDaily, 27 September 2005. <www.sciencedaily.com/releases/2005/09/050926084621.htm>.
Cell Press. (2005, September 27). Hormones And Growth: The Control Of Body Size And Developmental Growth Rate In Fruit Flies. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2005/09/050926084621.htm
Cell Press. "Hormones And Growth: The Control Of Body Size And Developmental Growth Rate In Fruit Flies." ScienceDaily. www.sciencedaily.com/releases/2005/09/050926084621.htm (accessed October 24, 2014).

Share This



More Plants & Animals News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins