Featured Research

from universities, journals, and other organizations

Potential Malaria Drug Target Identified

Date:
November 24, 2005
Source:
Public Library of Science
Summary:
A newly identified enzyme has the potential to open the door to new malaria drug therapies. The most severe form of malaria, a disease that affects over 300 million people annually, is caused by the single-celled parasite Plasmodium falciparum, which was the focus of the study.

Researchers have identified an enzyme crucial to the malaria parasite's invasion of red blood cells, according to a study in the open-access journal, PLoS Pathogens.

"The most exciting practical implication of this work is that it identifies a potential drug target that is quite different from anything that is targeted by existing antimalarial drugs," Blackman says. "This is very important, since it is widely agreed that the best way to prevent the appearance of drug resistance in any pathogen is to use combinations of drugs that target distinct biochemical pathways."

The most severe form of malaria, a disease that affects over 300 million people annually, is caused by the single-celled parasite Plasmodium falciparum, which was the focus of the study.

A number of different proteins on the surface of malaria parasites help the invaders bind to red blood cells. But once attached to host blood cells, the parasites need to shed the "sticky" surface proteins that would otherwise interfere with entrance into the cell.

"What we have discovered is the parasite enzyme -we refer to it as a 'sheddase'- which sheds the sticky proteins," says Michael Blackman, senior author of the study and parasitologist at London's National Institute for Medical Research. The enzyme, called PfSUB2, is required for the parasites to invade cells; without it, the parasites die.

The results also shed light on the fundamental mechanisms malaria parasites use to infect cells. "The malaria parasite is related to several other major pathogens, all of which invade cells in a similar manner, so work such as this can have wide-ranging implications," according to Blackman.

Blackman's team has worked on malarial surface proteins for over 15 years. "We predicted that this enzyme must have the capacity to 'move' across the surface of the parasite, since the proteins that are shed are themselves distributed all over the parasite surface," he says.

A major challenge in the study was to visualize that motion. "To overcome this, we genetically modified the parasite by 'tagging' PfSUB2 so that we could visually follow its movement within the parasite. It was only by doing this that we were able to see that PfSUB2 is secreted onto and across the parasite surface," he says.

The enzyme is stored in and released from cellular compartments near the tip of the parasite, according to the study. Once on the surface, the enzyme attaches to a motor that shuttles it from front to back, liberating the sticky surface proteins. With these proteins removed, the parasite gains entrance into a red blood cell. The entire invasion lasts about 30 seconds.

By designing a specific inhibitor that impeded the ability to shed the sticky proteins, Blackman and his team interfered with the enzyme's normal functioning. A drug--yet to be designed--could possibly do the same, preventing the parasites from infecting blood cells.

###

CITATION: Harris PK, Yeoh S, Dluzewski AR, O'Donnell RA, Withers-Martinez C, et al. (2005) Molecular identification of a malaria merozoite surface sheddase. PLoS Pathog 1(3): e29.

http://dx.doi.org/10.1371/journal.ppat.0010029



Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Cite This Page:

Public Library of Science. "Potential Malaria Drug Target Identified." ScienceDaily. ScienceDaily, 24 November 2005. <www.sciencedaily.com/releases/2005/11/051124220047.htm>.
Public Library of Science. (2005, November 24). Potential Malaria Drug Target Identified. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2005/11/051124220047.htm
Public Library of Science. "Potential Malaria Drug Target Identified." ScienceDaily. www.sciencedaily.com/releases/2005/11/051124220047.htm (accessed October 21, 2014).

Share This



More Plants & Animals News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins