Featured Research

from universities, journals, and other organizations

Plant-derived Vaccines Safeguard Against Deadly Plague

Date:
January 16, 2006
Source:
Arizona State University
Summary:
Through an innovative feat of plant biotechnology and vaccine design, researchers in the Biodesign Institute at Arizona State University have successfully turned tobacco plants into vaccine production factories to combat the deadliest form of plague. The vaccine elicits a protective immune response in guinea pigs. The results are considered to be a milestone in the future development of a new vaccine for human use.

Through an innovative feat of plant biotechnology and vaccine design, researchers in the Biodesign Institute at Arizona State University have successfully turned tobacco plants into vaccine production factories to combat the deadliest form of plague. The vaccine elicits a protective immune response in guinea pigs.
Credit: Image courtesy Charles Kazilek, Life Sciences Visualization Laboratory, ASU School of Life Sciences

Through an innovative feat of plant biotechnology and vaccine design, researchers in the Biodesign Institute at Arizona State University have successfully turned tobacco plants into vaccine production factories to combat the deadliest form of plague. The vaccine elicits a protective immune response in guinea pigs. The results are considered to be a milestone in the future development of a new vaccine for human use.

Plague, caused by a rod-shaped bacterium called Yersinia pestis, no longer invokes the "black death" feared throughout history, having been widely tamed since the advent of antibiotics. But a new concern has emerged in recent years with respect to bioterrorism.

"There have been discovered some resistant strains to antibiotics and that poses a concern, especially if plague would be used as a bioweapon," said Luca Santi, a research assistant professor at the institute and lead author of the study published in the early online edition of the journal Proceedings of the National Academy of Sciences. "A new vaccine approach would be the best way to prevent infection."

In addition to manmade threats, the Centers for Disease Control estimates 1,000 to 3,000 outbreaks still occur in the world every year as a result of people coming into close contact with rodents infected with fleas that harbor the bacteria.

Particularly worrisome to human health is the pneumonic form of the disease, which can spread by an airborne route after infecting the lungs. It is considered universally fatal if not detected and treated after symptoms arise one to six days after the initial exposure.

Current vaccines against plague are severely limited from widespread adoption by having problems with high adverse reaction rates and side effects.

The research team included Santi, Hugh Mason and Charles Arntzen, all members of the institute's Center for Infectious Disease and Vaccinology. They worked out a new plant-based system to rapidly and stably produce high levels of proteins, called antigens, which conferred immunity against the plague.

"This current work represents a new direction in our research because we've come to the realization that plants also have the potential for the production of antigens that can be purified and delivered by typical intramuscular or subcutaneous injections -- the way most vaccines are normally given," said Mason, an associate professor in the School of Life Sciences. "This new system produces really high levels of antigens in relatively short periods of time."

The researchers modified tobacco plants to make high levels of the plague antigens F1, V and a combination of the two, a so-called F1-V fusion antigen. All are known to be important for the plague bacteria to produce its toxic effects.

The antigens were purified from the plants and injected into guinea pigs. Testing using an aerosolized form of plague was performed by Chad Roy and Robert Webb at the U.S. Army Medical Research Institute of Infectious Disease at Fort Detrick, Maryland. This project was also the first comparison study designed to test more than one kind of antigen during the same challenge.

"The idea with any recombinant subunit vaccine is that you can pick and choose selective antigens that can confer protection and limit the potential for adverse reaction," said Mason.

More than half the vaccinated animals survived the challenge with all forms of the antigen, and guinea pigs vaccinated with V antigen alone had the highest survival rates.

"This study provided validation of our plant expression system, that it can produce the bacterial antigens in a native form that will allow for an appropriate immune response against a bacterial pathogen." Mason.

Critical to the success of the study was a collaboration set up with Anatoli Giritch, Victor Klimyuk and Yuri Gleba, who originally developed the plant expression system at Icon Genetics, located in Halle, Germany.

The group's results are the first to use Icon's viral expression system that adapts the tobacco mosaic virus (TMV) to produce a plant-based vaccine against plague. TMV, a common scourge of the plant world, causes widespread plant disease and can damage and mottle the leaves, flowers and fruits of whole crops. In the system, TMV is simply injected into the leaves of the tobacco plants.

Like most crops, producing vaccines in tobacco plants primarily revolved around issues of speed, low cost and high yield. "The major advantage of the vaccine is the rapidity of the system," said Santi. "In a matter of 10 days, we can go from infecting the plants to harvesting the plants. From there, we purify the antigens in an additional one to two weeks to create the vaccine."

The approach also eliminates the typical year-long lag time necessary to establish and characterize genetically modified, or transgenic plants.

The beauty of system is its potential versatility that can be adapted to fight against other pathogens as well. The research team's next step is to refine their methods to achieve a large-scale commercial production of the vaccine.

###

The Biodesign Institute at Arizona State University addresses challenges to human health by integrating research in biology, chemistry, physics, medicine, agriculture, environmental science, electronics, engineering and computing. This bold approach ensures discoveries are rapidly converted into applications and adopted by the private sector. For information, visit www.biodesign.org or call (480) 727-8322.


Story Source:

The above story is based on materials provided by Arizona State University. Note: Materials may be edited for content and length.


Cite This Page:

Arizona State University. "Plant-derived Vaccines Safeguard Against Deadly Plague." ScienceDaily. ScienceDaily, 16 January 2006. <www.sciencedaily.com/releases/2006/01/060115180341.htm>.
Arizona State University. (2006, January 16). Plant-derived Vaccines Safeguard Against Deadly Plague. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2006/01/060115180341.htm
Arizona State University. "Plant-derived Vaccines Safeguard Against Deadly Plague." ScienceDaily. www.sciencedaily.com/releases/2006/01/060115180341.htm (accessed October 21, 2014).

Share This



More Plants & Animals News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins