Featured Research

from universities, journals, and other organizations

Mice With Glowing Hearts Shed Light On How Hearts Develop

Date:
March 10, 2006
Source:
Cornell University
Summary:
Many people have heard of a heart of gold, but what about a heart that glows? Cornell researchers have genetically engineered mice whose hearts fluoresce as they beat. The development gives researchers insights into how hearts develop in living mouse embryos and could improve our understanding of irregular heartbeats.

This series reveals increases in cell calcium from a mouse embryo's upper heart through the lower heart on day 10 of development. Cell calcium rises when muscles contract. The bottom row shows a dramatic slowing of the conducted calcium wave between the upper and lower heart chambers.
Credit: Image Kotlikoff et al.

There is the heart of gold, and then there is the heart that glows. Literally.

Cornell researchers have genetically engineered mice whose hearts glow with a green light every time they beat. The development gives researchers insights into how hearts develop in living mouse embryos and could improve our understanding of irregular heartbeats, known as arrhythmias, as well as open doors to observing cellular processes to better understand basic physiology and disease.

The technique for making living, functional cells fluoresce, or glow, when the concentration of calcium ions rise within cells, is described online at http://www.pnas.org/papbyrecent.shtml and is to be published in a future issue of Proceedings of the National Academy of Sciences.

"The proteins act as molecular spies that tell us what is happening within cells in the living mouse," said Michael Kotlikoff, professor and chair of the Department of Biomedical Sciences at Cornell's College of Veterinary Medicine.

Cornell researchers are breeding new lines of mice with similar proteins that target neurons in the brain, in parasympathetic nerves, in blood vessels or in Purkinje fibers, which prompt the heart's ventricles to pump. The researchers have also transplanted cells from the mice with glowing hearts into normal mice to see whether the transplanted cells function normally within the host heart, which could offer insights for heart repair.

In the study, the mouse was engineered to express a specially designed molecule that fluoresces when calcium, which increases dramatically with each muscle contraction, is released in heart cells. Co-author Junichi Nakai of the RIKEN Brain Science Institute in Wako-shi, Japan, developed the fluorescent molecule by modifying a green fluorescent protein (derived from bioluminescent jellyfish) and making it glow brightly enough to be observed in the working heart.

Calcium turns the sensor molecule off and on like a molecular switch. Greater fluorescence indicates higher calcium levels, and the sensor shows the patterns, rate and force of heart contractions.

Since the mouse heart beats approximately 6 to 10 times per second, imaging requires a special high-speed camera that is cooled to minus 90 degrees Celsius (minus 128 Fahrenheit), reducing "noise" for a sharper image. Co-author Guy Salama of the University of Pittsburgh contributed the optical imaging work.

Using this technique, the researchers were able to track the embryo's developing heart to glean insights into how the heart forms. In mammals, the heart is the first organ to function and starts beating prior to its full development.

"We knew that the heart starts to pump at around 9.5 days," said Kotlikoff. By day 10.5, there are only two chambers (rather than four chambers in an adult mammal): an atrium on top and a ventricle on the bottom. A delay in beats between the two gives the atrium time to contract and push blood through the heart, but the mechanism that controls that signal, the atrio-ventricular node (AV node), doesn't develop until day 13. Nobody knew how the heart coordinated the pumping without this key component.

"We knew there had to be a delay in this, but we had no idea how it occurred," said Kotlikoff.

Using the new technique, which tracks the rise of calcium as the heart muscle contracts, the researchers discovered a layer of specialized cells on the surface of the developing heart that delays the beating between the upper to lower parts of the heart. After 13.5 days of development, the two portions of the heart separate into four, and there is a functional AV node. By that time, the technique revealed, the specialized cells have died so that functions are not duplicated.

"These cells have to die, because if they didn't the heart would not function properly," said Kotlikoff.

The study was funded by the National Institutes of Health and Japan's Ministry of Education, Culture, Sports Science and Technology.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "Mice With Glowing Hearts Shed Light On How Hearts Develop." ScienceDaily. ScienceDaily, 10 March 2006. <www.sciencedaily.com/releases/2006/03/060309081355.htm>.
Cornell University. (2006, March 10). Mice With Glowing Hearts Shed Light On How Hearts Develop. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2006/03/060309081355.htm
Cornell University. "Mice With Glowing Hearts Shed Light On How Hearts Develop." ScienceDaily. www.sciencedaily.com/releases/2006/03/060309081355.htm (accessed April 16, 2014).

Share This



More Health & Medicine News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Formerly Conjoined Twins Released From Dallas Hospital

Formerly Conjoined Twins Released From Dallas Hospital

Newsy (Apr. 16, 2014) Conjoined twins Emmett and Owen Ezell were separated by doctors in August. Now, nearly nine months later, they're being released from the hospital. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins