Featured Research

from universities, journals, and other organizations

Why Does A Starving Diamond-Back Continue To Grow? Optimism!

Date:
April 6, 2006
Source:
American Physiological Society
Summary:
Coining "starvation syndrome" to describe the whole range of physiological coping mechanisms, a University of Arkansas research says rattlesnakes reduced energy use 80 percent over 168 days. They also moved slower and chiefly "fed" on their energy-rich lipid stores. Continually converting internal protein into carbohydrates prevented glucose "crashes" similar to those that can result from diabetic conditions in humans. Despite literally eating themselves from within, they grew over the five and a half months, indicating continued health.

Nearly every organism has developed its own mechanism to cope with starvation or reduce food availability, whether for hours or months.

In the arctic winter, penguins and polar bears store up huge amounts of fat but stay active. Hibernators such as squirrels and groundhogs fatten up for the winter then lower their metabolism by sleeping off.

But desert snakes don't display any such outward manifestation that might hint at how they manage to survive blistering summers while remaining relatively active.

Presenting a paper in an American Physiological Society session at Experimental Biology 2006, Marshall McCue notes that "birds, fish and mammals including humans have been studied in terms of food-deprivation, but surprisingly, the desert snakes haven't been studied in this regard considering that in the wild they'll go for up to two years without food. So McCue carefully studied 16 diamond-back rattlesnakes for 168 days, nearly 5 months.

*Paper presentation: "Characterizing the starvation syndrome in the western diamond-back rattlesnake, a species well-suited to tolerate long-term fasting," 12:30 p.m.- 3 p.m. Monday April 3, APS Physiological Ecology & Evolutionary Physiology Section 492.4/board #C769. Research was by Marshall D. McCue, Department of Biology, University of Arkansas, Fayetteville.

First McCue came up with the phrase "starvation syndrome" to reflect the whole range of physiological coping mechanisms that the snakes employ. "Perhaps the greatest adaptation in this species is their ability to reduce energy expenditures by an average of 80% over 168 days of starvation," McCue said.

In addition to slowing down to conserve energy, McCue found that the snakes "chiefly 'fed' on their energy-rich lipid stores. The continual conversion of internal protein by these snakes into carbohydrates prevented glucose 'crashes' similar to those that can result from diabetic conditions in humans," he noted.

Another surprising finding was that despite literally eating themselves from within, the snakes actually grew over the 5 months of starvation. Earlier reports on some starving reptiles said they actually shrank, but McCue found in this study of 16 diamond-backs – as well as another with rat snakes, but not pythons – measured growth. "This supports the long-standing hypothesis that a snake's length correlates with physiological fitness," McCue said. But beyond that and more.

In a sense, he says, even though the snake's mass is shrinking, as it must although it's increasing its own water content probably to maintain cellular shape, "it isn't panicking. Another line of evidence is the increased amount of relative calcium, which in fact doubled over the experiment. Because it takes more energy to grow than to eat yourself, the snake changes shape by reducing its girth and putting its resources into skeletal muscles and bone."

Among the many other metabolic changes, McCue pointed to an increase in fatty acids in the snakes. But as time went on, "the fatty acids became less saturated and they became polyunsaturated because in addition to beta-oxidation, they're undergoing some really dramatic changes as enzymes 'pick off' bits of hydrogen for energy."

In addition to the possible diabetes implications, McCue believes that all these metabolic changes point to ideas on "how we might be able to engineer diet so animals, and say humans in space, can tolerate food-deprivation better. Probably we can't do that with amino acid manipulation, but perhaps with fatty acids," he said. Another place where reduced food intake is vital, he adds, is in some post-operative recuperation where food intake needs to be strictly controlled.


Story Source:

The above story is based on materials provided by American Physiological Society. Note: Materials may be edited for content and length.


Cite This Page:

American Physiological Society. "Why Does A Starving Diamond-Back Continue To Grow? Optimism!." ScienceDaily. ScienceDaily, 6 April 2006. <www.sciencedaily.com/releases/2006/04/060406101718.htm>.
American Physiological Society. (2006, April 6). Why Does A Starving Diamond-Back Continue To Grow? Optimism!. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2006/04/060406101718.htm
American Physiological Society. "Why Does A Starving Diamond-Back Continue To Grow? Optimism!." ScienceDaily. www.sciencedaily.com/releases/2006/04/060406101718.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins