Featured Research

from universities, journals, and other organizations

Algae's Protein 'Tails' Create Motion ... And Aid Munching

Date:
May 29, 2006
Source:
Brown University
Summary:
Flagella, the wee whips that set some microorganisms in motion, also help colonies of green algae take in additional nutrients. This finding, made by a team of scientists from University of Arizona and Brown University, may help explain how some organisms make the evolutionary leap to multicellularity.

The beating flagella of a Volvox colony creates a flow of water around it, visible here through the use of miniscule, illuminated plastic beads. The coordinated beating of flagella creates a nutrient-rich environment for the colony.
Credit: Image : University of Arizona

When single-celled organisms such as sperm crack their whip-like appendages called flagella, the beating sets them in motion. But in certain colonies of green algae, flagella also boost nutrient uptake, according to surprising new research.

Related Articles


In the early online edition of the Proceedings of the National Academy of Sciences, researchers from the University of Arizona and Brown University explain how flagella allow these algae to get the energy they need to multiply and create colonies – the critical secret that allowed them to evolve into multicellular organisms.

“This is the first evidence that flagella not only help organisms move, but can help them feed at a rate that allowed them to evolve to a larger size,” said Thomas Powers, an assistant professor of engineering at Brown who studies microorganisms in motion. “This is a critical piece of information, since understanding how one-celled life forms evolve into many-celled ones is a fundamental question in biology.”

The team studied a group of green algae known as the volvocines, organisms so common they can be found in puddles of rain. Biologists study the group, which runs the gamut from single-celled organisms to teeming colonies, to understand how cells differentiate and multiply. But how did the volvocines jump from solo cells to Volvox, a colony of as many as 50,000 cells?

It’s a puzzler of a question, given the size of a Volvox colony and the laws of physics. Bigger organisms need more energy – a lot more energy – to survive. And Volvox is the largest colony that the volvocines make, a giant ball of flagella-waving body guards protecting a small cluster of reproductive cells. When the radius of the spherical colony increases by a factor of two, the area of the sphere increases by a factor of four. So it follows that the energy demands for Volvox would quadruple, too, as it grows.

Yet microscopic organisms such as volvocines get nutrients through diffusion, a process by which bits of food bump into the cell and pass through the cell membrane. Doubling the radius of the colony doubles – not quadruples – the colony’s food intake rate. So a large organism such as a Volvox colony shouldn’t survive because it would demand more energy than passive feeding could supply, a conundrum that researchers refer to as the “bottleneck problem.”

The research team had a hunch that flagella somehow played a role in bringing in nutrients needed for Volvox to grow and survive. Raymond Goldstein, a professor of physics and applied mathematics at the University of Arizona, gathered together a group of scientists with expertise in physics, mathematics, engineering and biology to work on the problem.

The team created a mathematical model that allowed them to calculate how the flagella created a flow of water around the colony and verified this prediction with experimental measurements. Then they used the model to show that the coordinated beating of the flagella concentrated the nutrients just ahead of the moving colony. The colony plows into this nutrient-rich region and leaves a plume of waste in its wake.

So a Volvox colony doesn’t just passively feed, it actively increases the concentration of nutrients around it using its flagella. Put another way, these tiny protein whips not only acts as legs, but also as arms, gathering in food the colony needs to grow and thrive.

Powers, brought in to help with biomechanical theory, said the surprise in the finding is that the nutrient current created by Volvox was proportional to the surface area of the colony. In other words, Volvox met its rapidly increasing demand for nutrients through flagellar beating, allowing the organism to make the multicellular leap.

“Previous models would have predicted that the nutrient demands of Volvox would outstrip the supply,” Powers said. “But we showed that metabolic supply can, in fact, keep up with metabolic demand. The colony beat the bottleneck problem. Its increasing size is actually an advantage, allowing it to create a faster flow of nutrients.”

The National Science Foundation funded the work.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Cite This Page:

Brown University. "Algae's Protein 'Tails' Create Motion ... And Aid Munching." ScienceDaily. ScienceDaily, 29 May 2006. <www.sciencedaily.com/releases/2006/05/060526180514.htm>.
Brown University. (2006, May 29). Algae's Protein 'Tails' Create Motion ... And Aid Munching. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2006/05/060526180514.htm
Brown University. "Algae's Protein 'Tails' Create Motion ... And Aid Munching." ScienceDaily. www.sciencedaily.com/releases/2006/05/060526180514.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins