Featured Research

from universities, journals, and other organizations

Algae's Protein 'Tails' Create Motion ... And Aid Munching

Date:
May 29, 2006
Source:
Brown University
Summary:
Flagella, the wee whips that set some microorganisms in motion, also help colonies of green algae take in additional nutrients. This finding, made by a team of scientists from University of Arizona and Brown University, may help explain how some organisms make the evolutionary leap to multicellularity.

The beating flagella of a Volvox colony creates a flow of water around it, visible here through the use of miniscule, illuminated plastic beads. The coordinated beating of flagella creates a nutrient-rich environment for the colony.
Credit: Image : University of Arizona

When single-celled organisms such as sperm crack their whip-like appendages called flagella, the beating sets them in motion. But in certain colonies of green algae, flagella also boost nutrient uptake, according to surprising new research.

In the early online edition of the Proceedings of the National Academy of Sciences, researchers from the University of Arizona and Brown University explain how flagella allow these algae to get the energy they need to multiply and create colonies – the critical secret that allowed them to evolve into multicellular organisms.

“This is the first evidence that flagella not only help organisms move, but can help them feed at a rate that allowed them to evolve to a larger size,” said Thomas Powers, an assistant professor of engineering at Brown who studies microorganisms in motion. “This is a critical piece of information, since understanding how one-celled life forms evolve into many-celled ones is a fundamental question in biology.”

The team studied a group of green algae known as the volvocines, organisms so common they can be found in puddles of rain. Biologists study the group, which runs the gamut from single-celled organisms to teeming colonies, to understand how cells differentiate and multiply. But how did the volvocines jump from solo cells to Volvox, a colony of as many as 50,000 cells?

It’s a puzzler of a question, given the size of a Volvox colony and the laws of physics. Bigger organisms need more energy – a lot more energy – to survive. And Volvox is the largest colony that the volvocines make, a giant ball of flagella-waving body guards protecting a small cluster of reproductive cells. When the radius of the spherical colony increases by a factor of two, the area of the sphere increases by a factor of four. So it follows that the energy demands for Volvox would quadruple, too, as it grows.

Yet microscopic organisms such as volvocines get nutrients through diffusion, a process by which bits of food bump into the cell and pass through the cell membrane. Doubling the radius of the colony doubles – not quadruples – the colony’s food intake rate. So a large organism such as a Volvox colony shouldn’t survive because it would demand more energy than passive feeding could supply, a conundrum that researchers refer to as the “bottleneck problem.”

The research team had a hunch that flagella somehow played a role in bringing in nutrients needed for Volvox to grow and survive. Raymond Goldstein, a professor of physics and applied mathematics at the University of Arizona, gathered together a group of scientists with expertise in physics, mathematics, engineering and biology to work on the problem.

The team created a mathematical model that allowed them to calculate how the flagella created a flow of water around the colony and verified this prediction with experimental measurements. Then they used the model to show that the coordinated beating of the flagella concentrated the nutrients just ahead of the moving colony. The colony plows into this nutrient-rich region and leaves a plume of waste in its wake.

So a Volvox colony doesn’t just passively feed, it actively increases the concentration of nutrients around it using its flagella. Put another way, these tiny protein whips not only acts as legs, but also as arms, gathering in food the colony needs to grow and thrive.

Powers, brought in to help with biomechanical theory, said the surprise in the finding is that the nutrient current created by Volvox was proportional to the surface area of the colony. In other words, Volvox met its rapidly increasing demand for nutrients through flagellar beating, allowing the organism to make the multicellular leap.

“Previous models would have predicted that the nutrient demands of Volvox would outstrip the supply,” Powers said. “But we showed that metabolic supply can, in fact, keep up with metabolic demand. The colony beat the bottleneck problem. Its increasing size is actually an advantage, allowing it to create a faster flow of nutrients.”

The National Science Foundation funded the work.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Cite This Page:

Brown University. "Algae's Protein 'Tails' Create Motion ... And Aid Munching." ScienceDaily. ScienceDaily, 29 May 2006. <www.sciencedaily.com/releases/2006/05/060526180514.htm>.
Brown University. (2006, May 29). Algae's Protein 'Tails' Create Motion ... And Aid Munching. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2006/05/060526180514.htm
Brown University. "Algae's Protein 'Tails' Create Motion ... And Aid Munching." ScienceDaily. www.sciencedaily.com/releases/2006/05/060526180514.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins