Featured Research

from universities, journals, and other organizations

'Blimp1' Gene Leads To Discovery Of Cells Responsible For Skin's Sebaceous Gland

Date:
August 11, 2006
Source:
Rockefeller University
Summary:
New research from Rockefeller University's Elaine Fuchs examines how skin cells involved in oil production develop from a newly identified population of cells adjacent to the hair follicle. Their findings have implications for skin disorders such as acne and certain kinds of cancer, and may also provide clues to how stem cells control proliferation and differentiation.

Cells which form the sebaceous gland (green bulge), and are linked to the hair follicle, secrete oil to help lubricate and waterproof the skin. Elaine Fuchs's lab discovered that a small population of cells adjacent to the gland express the Blimp1 protein (red) and act as progenitor cells, generating all of the cells the gland needs to function.
Credit: Image courtesy of Rockefeller University

Mice may not get zits, but they do have oily skin. This week, new research on mice from Rockefeller University shows how the cells responsible for oil production develop, and uncovers clues about how stem cells renew and differentiate.

Related Articles


The research focuses on the skin's sebaceous gland, which is linked to the hair shaft and secretes an oily mixture called sebum. But until today how the sebaceous gland is formed during development was a matter of debate: one group of scientists proposed that skin stem cells produce the gland and a second group suggested that it had its own progenitor cells. In new research, published in the August 11 issue of Cell, Elaine Fuchs, a Howard Hughes Medical Institute investigator at Rockefeller University, settles this argument, showing that at the site where the sebaceous gland adjoins the hair follicle, a unique population of cells exists whose sole job is to make, and maintain, the sebaceous gland.

"We were exploring the expression of a transcription factor called Blimp1, which had surfaced in a genetic screen that we had conducted." explains Fuchs, who is the Rebecca C. Lancefield Professor and head of the Laboratory of Mammalian Cell Biology and Development at Rockefeller. "We were surprised to find that Blimp1 was expressed in a small population of cells within the sebaceous gland. We knew these cells were skin keratinocytes but no one had ever described their existence and therefore, we had no clues about their relationship to the gland."

Valerie Horsley, a postdoc in the Fuchs lab and first author of the paper, had been interested in Blimp1's role in hair follicle development, and had engineered mice that were missing the Blimp1 gene in their skin. "When the mice were born, they formed normal hair follicles, which was quite disappointing," says Horsley. "But when they were around one month of age I noticed that the mice started getting very oily skin."

The sebaceous glands in mice missing Blimp1 were much larger than in normal skin. This happens in another genetically altered mouse, one overexpessing the c-myc gene, which has been implicated in many different kinds of cancers. Horsley found that Blimp1 usually acts to repress c-myc expression, and in mice without Blimp1 c-myc expression was increased, causing the sebaceous gland to contain cells that divide more frequently. When Horsley tagged the Blimp1 positive cells and tracked them, she found that the daughters of the Blimp1 cells contribute to the entire gland. Also, when grown outside in culture, the cells that make Blimp1 can divide and self-renew, as well as make the cell types important for generating the oils of the sebaceous gland.

"The data show clearly that these cells are the progenitors for the entire sebaceous gland," says Horsley. "And Blimp1 is somehow controlling this progenitor population, regulating how many cells are allowed into the gland. This is the first molecular characterization of these cells."

"This study has implications for understanding sebaceous gland disorders ranging from acne to sebaceous cell cancers," says Fuchs. "And it not only gives us a handle on these novel resident stem cells, but also clues to how stem cells can control the balance of proliferation and differentiation in tissues."


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Cite This Page:

Rockefeller University. "'Blimp1' Gene Leads To Discovery Of Cells Responsible For Skin's Sebaceous Gland." ScienceDaily. ScienceDaily, 11 August 2006. <www.sciencedaily.com/releases/2006/08/060811080932.htm>.
Rockefeller University. (2006, August 11). 'Blimp1' Gene Leads To Discovery Of Cells Responsible For Skin's Sebaceous Gland. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2006/08/060811080932.htm
Rockefeller University. "'Blimp1' Gene Leads To Discovery Of Cells Responsible For Skin's Sebaceous Gland." ScienceDaily. www.sciencedaily.com/releases/2006/08/060811080932.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins