Featured Research

from universities, journals, and other organizations

'Blimp1' Gene Leads To Discovery Of Cells Responsible For Skin's Sebaceous Gland

Date:
August 11, 2006
Source:
Rockefeller University
Summary:
New research from Rockefeller University's Elaine Fuchs examines how skin cells involved in oil production develop from a newly identified population of cells adjacent to the hair follicle. Their findings have implications for skin disorders such as acne and certain kinds of cancer, and may also provide clues to how stem cells control proliferation and differentiation.

Cells which form the sebaceous gland (green bulge), and are linked to the hair follicle, secrete oil to help lubricate and waterproof the skin. Elaine Fuchs's lab discovered that a small population of cells adjacent to the gland express the Blimp1 protein (red) and act as progenitor cells, generating all of the cells the gland needs to function.
Credit: Image courtesy of Rockefeller University

Mice may not get zits, but they do have oily skin. This week, new research on mice from Rockefeller University shows how the cells responsible for oil production develop, and uncovers clues about how stem cells renew and differentiate.

The research focuses on the skin's sebaceous gland, which is linked to the hair shaft and secretes an oily mixture called sebum. But until today how the sebaceous gland is formed during development was a matter of debate: one group of scientists proposed that skin stem cells produce the gland and a second group suggested that it had its own progenitor cells. In new research, published in the August 11 issue of Cell, Elaine Fuchs, a Howard Hughes Medical Institute investigator at Rockefeller University, settles this argument, showing that at the site where the sebaceous gland adjoins the hair follicle, a unique population of cells exists whose sole job is to make, and maintain, the sebaceous gland.

"We were exploring the expression of a transcription factor called Blimp1, which had surfaced in a genetic screen that we had conducted." explains Fuchs, who is the Rebecca C. Lancefield Professor and head of the Laboratory of Mammalian Cell Biology and Development at Rockefeller. "We were surprised to find that Blimp1 was expressed in a small population of cells within the sebaceous gland. We knew these cells were skin keratinocytes but no one had ever described their existence and therefore, we had no clues about their relationship to the gland."

Valerie Horsley, a postdoc in the Fuchs lab and first author of the paper, had been interested in Blimp1's role in hair follicle development, and had engineered mice that were missing the Blimp1 gene in their skin. "When the mice were born, they formed normal hair follicles, which was quite disappointing," says Horsley. "But when they were around one month of age I noticed that the mice started getting very oily skin."

The sebaceous glands in mice missing Blimp1 were much larger than in normal skin. This happens in another genetically altered mouse, one overexpessing the c-myc gene, which has been implicated in many different kinds of cancers. Horsley found that Blimp1 usually acts to repress c-myc expression, and in mice without Blimp1 c-myc expression was increased, causing the sebaceous gland to contain cells that divide more frequently. When Horsley tagged the Blimp1 positive cells and tracked them, she found that the daughters of the Blimp1 cells contribute to the entire gland. Also, when grown outside in culture, the cells that make Blimp1 can divide and self-renew, as well as make the cell types important for generating the oils of the sebaceous gland.

"The data show clearly that these cells are the progenitors for the entire sebaceous gland," says Horsley. "And Blimp1 is somehow controlling this progenitor population, regulating how many cells are allowed into the gland. This is the first molecular characterization of these cells."

"This study has implications for understanding sebaceous gland disorders ranging from acne to sebaceous cell cancers," says Fuchs. "And it not only gives us a handle on these novel resident stem cells, but also clues to how stem cells can control the balance of proliferation and differentiation in tissues."


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Cite This Page:

Rockefeller University. "'Blimp1' Gene Leads To Discovery Of Cells Responsible For Skin's Sebaceous Gland." ScienceDaily. ScienceDaily, 11 August 2006. <www.sciencedaily.com/releases/2006/08/060811080932.htm>.
Rockefeller University. (2006, August 11). 'Blimp1' Gene Leads To Discovery Of Cells Responsible For Skin's Sebaceous Gland. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2006/08/060811080932.htm
Rockefeller University. "'Blimp1' Gene Leads To Discovery Of Cells Responsible For Skin's Sebaceous Gland." ScienceDaily. www.sciencedaily.com/releases/2006/08/060811080932.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins