Featured Research

from universities, journals, and other organizations

Predicting Species Abundance In The Face Of Habitat Loss

Date:
September 28, 2006
Source:
Public Library of Science
Summary:
Manipulating habitat volume and the presence of top trophic levels of an aquatic community reveals that trophic structure can determine species abundance despite habitat loss, according to a study published in PLoS Biology.

Sarracenia purpurea.
Credit: Photo Nicholas J. Gotelli / Courtesy of PLoS Biology

Habitat loss poses the greatest threat to the survival of a species, and often precipitates the demise of top predators and wide-ranging animals, like the Siberian tiger and the orangutan. Any hope of recovering such critically endangered species depends on understanding what drives changes in population size following habitat contraction.

In a new study published in PLoS Biology, Nicholas Gotelli and Aaron Ellison test the relative contributions of habitat contraction, keystone species effects, and food-web interactions on species abundance, and provide experimental evidence that trophic interactions exert a dominant effect. Until now, direct evidence that trophic interactions play such an important role has been lacking, in part because manipulating an intact food web has proven experimentally intractable, and in part because these different modeling frameworks have not been explicitly compared.

Gotelli and Ellison overcame such technical limitations by using the carnivorous pitcher plant (Sarracenia purpurea) and its associated food web as a model for studying what regulates abundance in shrinking habitats. Every year, the pitcher plant, found in bogs and swamps throughout southern Canada and the eastern United States, grows six to 12 tubular leaves that collect enough water to support an entire aquatic food web. The pitcher plant food web starts with ants, flies, and other arthropods unlucky enough to fall into its trap. Midges and sarcophagid fly larvae "shred" and chew on the hapless insect. This shredded detritus is further broken down by bacteria, which in turn are consumed by protozoa, rotifers, and mites. Pitcher plant mosquito larvae feed on bacteria, protozoa, and rotifers. Older, larger sarcophagid fly larvae also feed on rotifers as well as on younger, smaller mosquito larvae.

Working with 50 pitcher plants in a bog in Vermont, Gotelli and Ellison subjected the plants to one of five experimental treatments, in which they manipulated habitat size (by changing the volume of water in the leaves), simplified the trophic structure (by removing the top trophic level--larvae of the dipterans fly, midge, and mosquito), did some combination of the two, or none of the above (the control condition). Dipteran larvae and water were measured as each treatment was maintained; both were replaced in the control condition and more water was added in the habitat expansion treatment. These treatments mimic the kinds of changes that occur in nature as habitat area shrinks and top predators disappear from communities.

The best predictors of abundance were models that incorporated trophic structure--including the "mosquito keystone model." This model accurately reflected the pitcher plant food web, with mosquito larvae preying on rotifers, and sarcophagid flies preying on mosquito larvae. "Bottom-up" food-web models (in which links flow from prey to predator) predicted that changes in bacteria population size influence protozoa abundances, which in turn affect mosquito numbers, and that changes in bacteria abundance also affect mite numbers, which impact rotifer abundance. This scenario lends support to the model of a Sarracenia food web in which each link in the chain performs a specialized service in breaking down the arthropod prey that is used by the next species in the processing chain.

With over 200 million acres of the world's forestlands destroyed in the 1990s alone, and an estimated 40% increase in the human population by 2050, a growing number of species will be forced to cope with shrinking habitat. Instead of trying to determine how individual species might respond to habitat loss, Gotelli and Ellison argue that incorporating trophic structure into ecological models may yield more-accurate predictions of species abundance--a critical component of species restoration strategies.

Citation: Gotelli NJ, Ellison AM (2006) Food-web models predict species abundances in response to habitat change. PLoS Biol 4(10): e324. DOI: 10.1371/journal.pbio.0040324.


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Cite This Page:

Public Library of Science. "Predicting Species Abundance In The Face Of Habitat Loss." ScienceDaily. ScienceDaily, 28 September 2006. <www.sciencedaily.com/releases/2006/09/060926072336.htm>.
Public Library of Science. (2006, September 28). Predicting Species Abundance In The Face Of Habitat Loss. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2006/09/060926072336.htm
Public Library of Science. "Predicting Species Abundance In The Face Of Habitat Loss." ScienceDaily. www.sciencedaily.com/releases/2006/09/060926072336.htm (accessed September 19, 2014).

Share This



More Earth & Climate News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Wildfires in CA Burn Forest Asunder

Raw: Wildfires in CA Burn Forest Asunder

AP (Sep. 18, 2014) An out-of-control Northern California wildfire has nearly 2,800 people from their homes as it continues to grow, authorities said Thursday. Authorities said a man has been arrested on suspicion of arson for starting the fire on Saturday. (Sept. 18) Video provided by AP
Powered by NewsLook.com
Raw: Elephant Undergoes Surgery in Tbilisi Zoo

Raw: Elephant Undergoes Surgery in Tbilisi Zoo

AP (Sep. 18, 2014) Grand the elephant has successfully undergone surgery to remove a portion of infected tusk at Tbilisi Zoo in Georgia. British veterinary surgeons used an electric drill to extract the infected piece. (Sept. 18) Video provided by AP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins