Featured Research

from universities, journals, and other organizations

Scientists Engineer Root-knot Nematode Resistance

Date:
September 28, 2006
Source:
University of Georgia
Summary:
University of Georgia professor Richard Hussey has spent 20 years studying a worm-shaped parasite too small to see without a microscope. His discovery is vastly bigger. Hussey and his research team have found a way to halt the damage caused by one of the world's most destructive groups of plant pathogens.

University of Georgia professor Richard Hussey has spent 20 years studying a worm-shaped parasite too small to see without a microscope. His discovery is vastly bigger. Hussey and his research team have found a way to halt the damage caused by one of the world's most destructive groups of plant pathogens.

Related Articles


Root-knot nematodes are the most economically important group of plant-parasitic nematodes worldwide, said Hussey, a distinguished research professor in plant pathology at the UGA College of Agricultural and Environmental Sciences.

They attack nearly every food and fiber crop grown, about 2,000 plant species in all.

The nematode invades plant roots, and by feeding on the roots' cells, they cause the roots to grow large galls, or knots, damaging the crop and reducing its yields.

Working with assistant research scientist Guozhong Huang and research technician Rex Allen, Hussey discovered how to make plants resistant to root-knot nematode infection.

Eric Davis at North Carolina State University and Thomas Baum at Iowa State University also collaborated on the research.

The discovery "has the potential to revolutionize root-knot resistance in all crops," Hussey said.

The most cost-effective and sustainable management tactic for preventing root-knot nematode damage and reducing growers' losses, he said, is to develop resistant plants that prevent the nematode from feeding on the roots. Because root-knot nematode resistance doesn't come naturally in most crops, Hussey's group bioengineered their own.

The results of the study were published Sept. 26 in the journal, Proceedings of the National Academy of Sciences.

Four common root-knot nematode species account for 95 percent of all infestations in agricultural land. By discovering a root-knot nematode parasitism gene that's essential for the nematode to infect crops, the scientists have developed a resistance gene effective against all four species.

Using a technique called RNA interference, the researchers have effectively turned the nematode's biology against itself. They genetically modified Arabidopsis, a model plant, to produce double-stranded RNA to knock out the specific parasitism gene in the nematode when it feeds on the plant roots.

This knocked out the parasitism gene in the nematode and disrupted its ability to infect plants.

"No natural root-knot resistance gene has this effective range of root-knot nematode resistance," Hussey said.

The researchers' efforts have been directed primarily at understanding the molecular tools the nematode uses to infect plants. This is a prerequisite for bioengineering durable resistance to these nematodes in crop plants.

Through this research, they've discovered the parasitism genes that make a nematode a plant parasite so it can attack and feed on crops, Huang said.

"Our results of in-plant RNA interference silencing of a parasitism gene in root-knot nematodes provides a way to develop crops with broad resistance to this destructive pathogen," Hussey said. "Equally important, our approach makes available a strategy for developing root-knot-nematode-resistant crops for which natural resistance genes do not exist."

Funding for the project came from the U.S. Department of Agriculture's Cooperative State Research, Education and Extension Service National Research Initiative and the UGA College of Agricultural and Environmental Sciences.


Story Source:

The above story is based on materials provided by University of Georgia. Note: Materials may be edited for content and length.


Cite This Page:

University of Georgia. "Scientists Engineer Root-knot Nematode Resistance." ScienceDaily. ScienceDaily, 28 September 2006. <www.sciencedaily.com/releases/2006/09/060927100819.htm>.
University of Georgia. (2006, September 28). Scientists Engineer Root-knot Nematode Resistance. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2006/09/060927100819.htm
University of Georgia. "Scientists Engineer Root-knot Nematode Resistance." ScienceDaily. www.sciencedaily.com/releases/2006/09/060927100819.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Buzz60 (Nov. 24, 2014) A Swedish Adventure racing team travels to try and win a world title, but comes home with something way better: a stray dog that joined the team for much of the grueling 430-mile race. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Terrifying Black Seadevil Fish Captured on First-of-Its Kind Video

Terrifying Black Seadevil Fish Captured on First-of-Its Kind Video

Buzz60 (Nov. 24, 2014) An aquarium captures a first-of-its kind video of a notoriously camera-shy fish that’s also not so camera-friendly. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Red Panda Cubs Explore the Bratislava Zoo

Red Panda Cubs Explore the Bratislava Zoo

AFP (Nov. 24, 2014) Four-month old Red Panda twins Pim and Pam still rely on their mother for breast milk at the Bratislava Zoo in Slovakia, but the precocious cubs have begun to branch out to solid foods, as well. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins