Featured Research

from universities, journals, and other organizations

Regulatory Pathway In Brain Development Possible Basis For Malformations

Date:
January 2, 2007
Source:
University of California - San Diego
Summary:
Researchers at UCSD School of Medicine have identified a genetic regulator of brain development that sheds new light on how immature neural cells choose between proliferation and differentiation. Defects in regulating this choice result in brain malformations. Their research will be published on line the week of December 4, in advance of publication in the Proceedings of the National Academy of Sciences (PNAS).

Animals that lack the Zfp423 gene (right) have a malformed cerebellum (cbm), including a complete loss of the midline structure (vermis). This structure is important for postural control and coordinated movement. The protein encoded by Zfp423 regulates the expression of other genes and is required for normal levels of proliferation by neural precursor cells in the cerebellum.
Credit: UCSD Medical Center

Researchers at the University of California, San Diego (UCSD) School of Medicine have identified a genetic regulator of brain development that sheds new light on how immature neural cells choose between proliferation and differentiation. Defects in regulating this choice result in brain malformations. Their research will be published on line the week of December 4, in advance of publication in the Proceedings of the National Academy of Sciences (PNAS.)

Related Articles


Bruce Hamilton, Ph.D., associate professor in the Department Medicine, and his colleagues have identified a genetic regulatory pathway that controls a neural precursor cell's decision to self-renew as a dividing precursor or differentiate into a non-dividing neuron. Cells that are unable to differentiate appropriately and continue to proliferate may give rise to brain cancers. On the other hand, cells that differentiate too soon or make too few cells can result in malformations of critical brain structures.

"Development of the brain requires intricate coordination to control the proliferation, differentiation, and connections among different groups of cells," said Hamilton. "We have found a gene in mice, mutated in one kind of malformation, which appears both to promote proliferation and to help coordinate differentiation of immature precursor cells."

The work in Hamilton's lab, led by UCSD Biomedical Sciences graduate students Wendy Alcaraz and David Gold, discovered a specific transcription factor called Zfp423. When Zfp423 is mutated in mice, developmental defects in the cerebellum occur that resemble Dandy-Walker malformations seen in human patients.

Dandy-Walker malformations occur in about one in 25,000 human births. Patients have a congenital malformation in the cerebellum, an area of the brain that controls movement, which can significantly slow motor development and cause progressive enlargement of the skull. Dandy-Walker malformation is frequently associated with disorders of other areas of the central nervous system and malformations of the heart, face, limbs, fingers and toes. Study of the Zfp423 mouse model in Hamilton's lab provides an important genetic clue in Dandy-Walker malformations, whose causes are not well understood.

"Loss of Zfp423 in mice results in diminished proliferation by precursor cells at a key time in the development of the cerebellum, resulting in its malformation," said Alcaraz.

The protein encoded by Zfp423 regulates the expression of other genes and is required for normal levels of proliferation by neural precursor cells in the cerebellum. This gene had previously been identified as a co-factor in two distinct signaling or regulatory pathways that mediate neuronal differentiation. The new work proposes that Zfp423 actually acts as a bridge between the two pathways.

"This means that external signals used in cell-cell communication could affect the developing neurons in ways we hadn't previously realized," Hamilton said. "In particular, cell lineage pathways that are often thought of as independent of signaling once they are initiated may really be under tight regulation by signaling-dependent pathways that compete with them for access to factors like Zfp423." He added that development of this mouse could lead to targeted therapies for some genetic brain disorders.

Additional contributors to this paper include Eric Raponi and Dorothy Concepcion of the UCSD Department of Medicine and Peter M. Gent, of the UCSD Biomedical Sciences Graduate Program. The research was funded in part by grants from the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Regulatory Pathway In Brain Development Possible Basis For Malformations." ScienceDaily. ScienceDaily, 2 January 2007. <www.sciencedaily.com/releases/2006/12/061206095345.htm>.
University of California - San Diego. (2007, January 2). Regulatory Pathway In Brain Development Possible Basis For Malformations. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2006/12/061206095345.htm
University of California - San Diego. "Regulatory Pathway In Brain Development Possible Basis For Malformations." ScienceDaily. www.sciencedaily.com/releases/2006/12/061206095345.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Tryptophan Isn't Making You Sleepy On Thanksgiving

Tryptophan Isn't Making You Sleepy On Thanksgiving

Newsy (Nov. 27, 2014) Tryptophan, a chemical found naturally in turkey meat, gets blamed for sleepiness after Thanksgiving meals. But science points to other culprits. Video provided by Newsy
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins