Featured Research

from universities, journals, and other organizations

New Miniaturized Device For Lab-on-a-chip Separations

Date:
January 22, 2007
Source:
National Institute of Standards and Technology
Summary:
Researchers at NIST have developed an elegantly simple, miniaturized technique for rapidly separating minute samples of proteins, amino acids and other chemical mixtures. A low-cost prototype device can run up to eight separations simultaneously in a space about the size of a quarter.

Core of the new NIST miniature GEMBE chemical separation device is a machined acrylic block, shown with a quarter for scale. Eight sample resevoirs for multiplexed separations form a ring around the central buffer solution port. (Smaller holes are for assembly screws.)
Credit: NIST

Researchers at the National Institute of Standards and Technology (NIST) have developed an elegantly simple, miniaturized technique for rapidly separating minute samples of proteins, amino acids and other chemical mixtures. A low-cost prototype device described in a recent paper* can run up to eight separations simultaneously in a space about the size of a quarter, highlighting the technique's potential for use in microfluidic "lab-on-a-chip" systems.

Conventional electrophoresis instruments separate mixtures of electrically charged species--DNA fragments, for example--by injecting a discrete sample of the mixture at one end of a chemical race track, such as a capillary tube filled with a buffer solution, and applying a high voltage between the sample and the other end of the track. Depending on their size, charge and chemical "mobility," the individual components of the mixture move down the track at different rates, gradually separating into individual bands. If two of the components move at very similar rates, it will require a relatively long channel--up to 50 centimeters or longer--to separate them effectively.

The new NIST technique, "gradient elution moving boundary electrophoresis" (GEMBE), works instead by opposing the movement of the mixture's components with a stream of buffering solution flowing at a variable rate. Like salmon swimming upstream, only the most mobile components can move up the channel against the highest buffer flow rates, but as that flow is reduced gradually, lesser mobility components begin to move. A sensor placed over the channel detects each new component as it arrives,

GEMBE is ideally suited for use in microfluidic "lab-on-a-chip" devices. Components are selected by buffer flow-rate rather than distance, so the channel can be very short--less than a centimeter in NIST prototypes. It doesn't require injection of a discrete sample, which greatly simplifies chip plumbing. By precisely controlling the flow rate, a particular component can be "parked" under the detector as long as desired to get a good signal, and the device can be adjusted easily to accommodate different separations. The device is easy to build with simple machining or molding techniques and low-cost polymers, enabling inexpensive mass production.

The technique has been validated at NIST with separations ranging from small dye molecules and amino acids to larger biomolecules, such as DNA. A prototype eight-channel GEMBE device built at NIST can produce a complete immunoassay calibration curve for insulin in a single run. NIST is applying for a patent on the method.

* J.G. Shackman, M.S. Munson and D. Ross. "Gradient elution moving boundary electrophoresis for high-throughput multiplexed microfluidic devices." Anal. Chem., 79 (2), 565 -571, 2007. 10.1021/ac061759h S0003-2700(06)01759-8 on line at http://pubs.acs.org/cgi-bin/abstract.cgi/ancham/2007/79/i02/abs/ac061759h.html


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "New Miniaturized Device For Lab-on-a-chip Separations." ScienceDaily. ScienceDaily, 22 January 2007. <www.sciencedaily.com/releases/2007/01/070119164405.htm>.
National Institute of Standards and Technology. (2007, January 22). New Miniaturized Device For Lab-on-a-chip Separations. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2007/01/070119164405.htm
National Institute of Standards and Technology. "New Miniaturized Device For Lab-on-a-chip Separations." ScienceDaily. www.sciencedaily.com/releases/2007/01/070119164405.htm (accessed April 19, 2014).

Share This



More Matter & Energy News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins