Science News
from research organizations

Scientists Probe 'Fly Spit' For Clues To Serious Wheat Pest

Date:
January 26, 2007
Source:
USDA/Agricultural Research Service
Summary:
The Hessian fly, the No. 1 global pest of wheat, is not your ordinary insect. Its fiercest weapon -- capable of making wheat plants droop, topple over and even commit cell suicide -- is its deadly saliva. Based on findings by scientists with the Agricultural Research Service (ARS) in Manhattan, Kan., the fly appears to put a lot of genetic stock in executing this unusual offensive.
Share:
         
Total shares:  
FULL STORY

Gut and salivary glands dissected from a Hessian fly larva as viewed through a microscope with dark-field illumination. The genes expressed in these tissues are critical to how the fly parasitizes wheat.
Credit: Photo by Rich Shukle

The Hessian fly, the No. 1 global pest of wheat, is not your ordinary insect. Its fiercest weapon -- capable of making wheat plants droop, topple over and even commit cell suicide -- is its deadly saliva.

Based on findings by scientists with the Agricultural Research Service (ARS) in Manhattan, Kan., the fly appears to put a lot of genetic stock in executing this unusual offensive. The ARS team has identified at least 2,000 genes that play some role in churning out the toxic salivary brew that the fly injects into wheat plants when taking a bite.

Led by entomologist Ming-Shun Chen, the researchers are zeroing in on these genes, in hopes of pinpointing those that make the destructive Hessian fly such an elusive pest.

For thousands of years, wheat plants and Hessian flies have been squaring off, with the fly trying to get access to its favorite food, as the wheat plants guard themselves from attack. For every one of wheat's resistance genes, there's a corresponding "avirulence" gene in the fly.

Even modern breeding efforts can't fully bolster wheat plants. At least four of the most recent resistance genes introduced into wheat plants no longer ensure an effective level of protection because of the fly's highly adaptive nature.

Chen and his team, who work at the Grain Marketing and Production Research Center (GMPRC) in Manhattan, have identified 97 "superfamilies" of genes in the fly that encode for toxic salivary proteins. This appears to be a hefty genetic investment, given the fly's minute genome, considered one of the smallest in the insect world.

The GMPRC researchers are also making progress in efforts to prop up fly-weary wheat plants. They've mapped several resistance genes in wheat, including the H9 and H13 gene clusters. These findings are helping breeders conduct marker-assisted selection, a method for "stacking" multiple protective genes into a single plant.

ARS is the U.S. Department of Agriculture's chief scientific research agency.


Story Source:

The above story is based on materials provided by USDA/Agricultural Research Service. Note: Materials may be edited for content and length.


Cite This Page:

USDA/Agricultural Research Service. "Scientists Probe 'Fly Spit' For Clues To Serious Wheat Pest." ScienceDaily. ScienceDaily, 26 January 2007. <www.sciencedaily.com/releases/2007/01/070125115529.htm>.
USDA/Agricultural Research Service. (2007, January 26). Scientists Probe 'Fly Spit' For Clues To Serious Wheat Pest. ScienceDaily. Retrieved April 26, 2015 from www.sciencedaily.com/releases/2007/01/070125115529.htm
USDA/Agricultural Research Service. "Scientists Probe 'Fly Spit' For Clues To Serious Wheat Pest." ScienceDaily. www.sciencedaily.com/releases/2007/01/070125115529.htm (accessed April 26, 2015).

Share This Page:


Plants & Animals News
April 26, 2015

Latest Headlines
updated 12:56 pm ET