Featured Research

from universities, journals, and other organizations

'Microsieve' Device Promises To Speed Up Separation, Sorting Of Proteins

Date:
February 21, 2007
Source:
Massachusetts Institute of Technology
Summary:
A new MIT microchip system promises to speed up the separation and sorting of biomolecules such as proteins. The work is important because it could help scientists better detect certain molecules, or biomarkers, associated with diseases, potentially leading to earlier diagnoses or treatments.

The MIT researchers' "microsieve" promises to improve the sorting of biomolecules such as proteins.
Credit: Image courtesy of Jongyoon Han

A new MIT microchip system promises to speed up the separation and sorting of biomolecules such as proteins. The work is important because it could help scientists better detect certain molecules associated with diseases, potentially leading to earlier diagnoses or treatments.

The microchip system has an extremely tiny sieve structure built into it that can sort through continuous streams of biological fluids and separate proteins accurately by size. Conventional separation methods employ gels, which are slower and more labor-intensive to process. The new microchip system could sort proteins in minutes, as compared to the hours necessary for gel-based systems.

The MIT team's results appear in the Feb. 5 issue of Nature Nanotechnology.

The new technology is an advance from a one-dimensional sieve structure reported by the same MIT group last year. The key to this new advance, called an anisotropic nanofluidic sieving structure, is that the researchers have designed the anisotropic sieve in two orthogonal dimensions (at a right angle), which enables rapid continuous-flow separation of the biological sample. This allows continuous isolation and harvesting of subsets of biomolecules that researchers want to study. And that increases the probability of detecting even the smallest number of molecules in the sample.

"With this technology we can isolate interesting proteins faster and more efficiently. And because it can process such small biologically relevant entities, it has the potential to be used as a generic molecular sieving structure for a more complex, integrated biomolecule preparation and analysis system," said Jongyoon Han, the Karl Van Tassel Associate Professor of Electrical Engineering and associate professor of biological engineering at MIT and head of the MIT team.

Han's coauthors of the Nature Nanotechnology paper are co-lead authors Jianping Fu, a Ph.D. candidate in the Department of Mechanical Engineering, and Reto B. Schoch, a postdoctoral associate in the Research Laboratory of Electronics (RLE). Additional authors are Anna Stevens, a postdoctoral associate in the Harvard-MIT Division of Health Sciences and Technology, and Professor Steven Tannenbaum of MIT's Biological Engineering Division.

Han noted that until the late 1990s, most advances in biological laboratory equipment were aimed at the Human Genome Project and discoveries related to DNA, which are larger molecules compared to proteins. However, because of the vital role proteins play in almost all biological processes, researchers began to focus their attention on proteins. But one obstacle has been the lack of good laboratory tools with which to prepare biological samples to analyze proteins, said Han, who also has affiliations in MIT's RLE, Computational and Systems Biology Initiative, Center for Materials Science and Engineering and Microsystems Technology Laboratories.

"I shifted my attention from DNA into the area of protein separation around 2002 with the shift to proteomics (the study of proteins)," Han said. "But the field was using decades-old gel electrophoresis technology. There is a big gap in the need for technology in this area."

Han and Fu therefore devised the anisotropic sieve that is embedded into a silicon chip. A biological sample containing different proteins is placed in a sample reservoir above the chip. The sample is then run through the sieve of the chip continuously. The chip is designed with a network of microfluidic channels surrounding the sieve, and the anisotropy (directional property) in the sieve causes proteins of different sizes to follow distinct migration trajectories, leading to efficient continuous-flow separation. The current sieve has an array of nanofluidic filters of about 55 nanometers, or billionths of a meter, wide.

"The proteins to be sorted are forced to take two orthogonal paths. Each path is engineered with different sieving characters. When proteins of different sizes are injected into the sieve under applied electric fields, they will separate into different streams based on size," Han explained. At the bottom of the chip the separated proteins are collected in individual chambers. Scientists then can test the proteins.

While other scientists have used similar continuous flow techniques to separate large molecules like long DNA, the MIT team succeeded with the tinier proteins. "This is the first time physiologically relevant molecules like proteins have been separated in such a manner," said Han. "We can separate the molecules in about a minute with the current device versus hours for gels."

Another advantage of the microchip is that it can have so many different pore sizes, and unlike gels, it is possible to design an exact pore size to increase the separation accuracy. That in turn can help researchers look for so-called biomarkers, or proteins that can reveal that disease is present, and thus help researchers develop diagnostics and treatments for the disease. "Sample preparation is critical in detecting more biomarker signals," said Han.

Funding came from the National Science Foundation, the National Institutes of Health and the Singapore-MIT Alliance.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "'Microsieve' Device Promises To Speed Up Separation, Sorting Of Proteins." ScienceDaily. ScienceDaily, 21 February 2007. <www.sciencedaily.com/releases/2007/02/070206095824.htm>.
Massachusetts Institute of Technology. (2007, February 21). 'Microsieve' Device Promises To Speed Up Separation, Sorting Of Proteins. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2007/02/070206095824.htm
Massachusetts Institute of Technology. "'Microsieve' Device Promises To Speed Up Separation, Sorting Of Proteins." ScienceDaily. www.sciencedaily.com/releases/2007/02/070206095824.htm (accessed August 1, 2014).

Share This




More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Cycle World (July 30, 2014) The Bonnier Motorcycle Group presents Smoked; a three part video series. In this episode the 2015 Ducati Diavel takes on the 2014 Chevy Corvette Stingray Video provided by Cycle World
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins