Featured Research

from universities, journals, and other organizations

New Material Removes Pollutants From Air

Date:
March 31, 2007
Source:
John Wiley & Sons, Inc.
Summary:
Japanese researchers have developed a new material that very effectively removes volatile organic compounds as well as nitrogen- and sulfur oxides from air at room temperature. Their system involves a highly porous manganese oxide with gold nanoparticles grown into it.

In addition to nitrogen oxides and sulfur oxides, many volatile organic compounds (VOCs) in air contribute to smog and high ozone levels, as well as potentially damaging human health. Clean-air laws are thus rightly continuing to become stricter. Most modern air-purification systems are based on photocatalysts, adsorbents such as activated charcoal, or ozonolysis.

Related Articles


However, these classic systems are not particularly good at breaking down organic pollutants at room temperature. Japanese researchers have now developed a new material that very effectively removes VOCs as well as nitrogen- and sulfur oxides from air at room temperature. As they report in the journal Angewandte Chemie, their system involves a highly porous manganese oxide with gold nanoparticles grown into it.

To prove the effectiveness of their new catalyst, the research team headed by Anil K. Sinha at the Toyota Central R&D Labs carried out tests with acetaldehyde, toluene, and hexane. These three major components of organic air pollution play a role indoors as well as out. All three of these pollutants were very effectively removed from air and degraded by the catalyst—significantly better than with conventional catalyst systems.

One secret to the success of this new material is the extremely large inner surface area of the porous manganese oxide, which is higher than all previously known manganese oxide compounds. This large surface area offers the volatile molecules a large number of adsorption sites. Moreover, the adsorbed pollutants are very effectively broken down. There is clearly plenty of oxygen available for oxidation processes within the manganese oxide lattice. Degradation on the surface is highly effective because free radicals are present there.

Presumably, oxygen from air dissociates on the gold surface to replace the consumed oxygen atoms in the lattice structure. This process only works if the material is produced in a very specific manner: The gold must be deposited onto the manganese oxide by means of vacuum-UV laser ablation. In this technique, a gold surface is irradiated with a special laser, which dislodges gold particles through evaporation. These gold particles have unusually high energy, which allows them to drive relatively deep into the surface of the manganese oxide. This process is the only way to induce sufficiently strong interactions between the little clumps of gold and the manganese oxide support.


Story Source:

The above story is based on materials provided by John Wiley & Sons, Inc.. Note: Materials may be edited for content and length.


Cite This Page:

John Wiley & Sons, Inc.. "New Material Removes Pollutants From Air." ScienceDaily. ScienceDaily, 31 March 2007. <www.sciencedaily.com/releases/2007/03/070330185114.htm>.
John Wiley & Sons, Inc.. (2007, March 31). New Material Removes Pollutants From Air. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2007/03/070330185114.htm
John Wiley & Sons, Inc.. "New Material Removes Pollutants From Air." ScienceDaily. www.sciencedaily.com/releases/2007/03/070330185114.htm (accessed October 31, 2014).

Share This



More Earth & Climate News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

World's Salamanders At Risk From Flesh-Eating Fungus

World's Salamanders At Risk From Flesh-Eating Fungus

Newsy (Oct. 31, 2014) The import of salamanders around the globe is thought to be contributing to the spread of a deadly fungus. Video provided by Newsy
Powered by NewsLook.com
Controversial French Dam Halted After Death of Protester

Controversial French Dam Halted After Death of Protester

AFP (Oct. 31, 2014) Local French authorities Friday decided to suspend work on a controversial dam after the death last week of an activist protesting against the project that sparked uproar in the country. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Raw: Hawaii Lava Inches Closer

Raw: Hawaii Lava Inches Closer

AP (Oct. 30, 2014) Aerial video shows the path lava has carved across a portion of Hawaii's big island, threatening homes in the town of Pahoa. Officials say the flow was just over 230 yards from a roadway Thursday morning. (Oct. 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins