New! Sign up for our free email newsletter.
Science News
from research organizations

How Flowers Form: New Insight

Date:
June 27, 2007
Source:
Max-Planck-Gesellschaft
Summary:
Flowers of higher plants are built in a similar pattern: their outermost whorl is composed of sepals, which protect the young bud, thereafter comes a whorl of often colorful petals attracting insect pollinators, followed by a whorl of stamens with pollen sacks and the innermost whorl holds carpels, which later give rise to the fruit and seeds. Scientists investigated a mutant of snapdragon where stamens form instead of petals.
Share:
FULL STORY

Flowers of higher plants are built in a similar pattern: their outermost whorl is composed of sepals, which protect the young bud, thereafter comes a whorl of often colorful petals attracting insect pollinators, followed by a whorl of stamens with pollen sacks and the innermost whorl holds carpels, which later give rise to the fruit and seeds. This basic architecture is comparable in higher plants prompting the question after common components of a genetic 'masterplan'.

During flowering four different types of floral organs need to be formed: sepals, which protect the inner organs; the frequently ornamental petals; stamens, which produce pollen and the carpels. This process is orchestrated by a large number of genes. Scientists have now found that a small molecule, a so-called microRNA, is crucial for the control of floral organs identity.

Scientists in the group of Zsuzsanna Schwarz-Sommer investigated a mutant of snapdragon where stamens form instead of petals (see image). Interestingly, a strikingly similar mutant occurs in another plant species, in Petunia. 'We already suspected some ten years ago when we first looked at these mutants that in the two species a similar defect might disturb the genetic control resulting in the 'wrong organ at the wrong place' explains Mrs. Schwarz-Sommer. A similar example is well known in the fruit fly where a mutant carries a pair of legs at the head instead of the two antennae.

Indeed, experiments performed by the German and Dutch scientists showed that in the two plant species mutation in the same gene conferred altered identity to the floral organs. This gene turned out to code for a microRNA, a small ribonucleic acid consisting of little more than 20 nucleotides. MicroRNAs can recognize and bind to complementary sequences present in messenger RNAs (mRNA) and prevent thereby translation of the mRNA into a protein: the respective gene falls silent. By this interaction microRNAs can influence whole chains of control events.

Mutations in microRNAs are rare, so this is the first example for the functional similarity of a plant microRNA in two species. Schwarz-Sommer underlines the significance of the work as follows. 'Our novel insights into control mechanisms governing floral organ identity will need to be built into future attempts to model this biological process mathematically.'

The complex control of floral organ identity has been described by the simple ABC model in textbooks. A, B and C are three developmental functions: A alone is responsible for sepals, combined function of A and B results in petals and combined B and C in stamens. The identity of the central carpel is solely controlled by C. The new results are in conflict with an important mechanistic prediction of this model and replace a static spatial control by a temporal dynamic one.

Reference: Maria Cartolano, Rosa Castillo, Nadia Efremova, Markus Kuckenberg, Jan Zethof, Tom Gerats, Zsuzsanna Schwarz-Sommer & Michiel Vandenbussche, "A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral reproductive organ identity," Nature Genetics, DOI 10.1038/ng2056


Story Source:

Materials provided by Max-Planck-Gesellschaft. Note: Content may be edited for style and length.


Cite This Page:

Max-Planck-Gesellschaft. "How Flowers Form: New Insight." ScienceDaily. ScienceDaily, 27 June 2007. <www.sciencedaily.com/releases/2007/06/070626115350.htm>.
Max-Planck-Gesellschaft. (2007, June 27). How Flowers Form: New Insight. ScienceDaily. Retrieved April 19, 2024 from www.sciencedaily.com/releases/2007/06/070626115350.htm
Max-Planck-Gesellschaft. "How Flowers Form: New Insight." ScienceDaily. www.sciencedaily.com/releases/2007/06/070626115350.htm (accessed April 19, 2024).

Explore More

from ScienceDaily

RELATED STORIES