Featured Research

from universities, journals, and other organizations

'Mighty Mice' Made Mightier

Date:
August 29, 2007
Source:
Johns Hopkins Medical Institutions
Summary:
The scientist who first showed that the absence of the protein myostatin leads to oversized muscles in mice and men has now found a second protein, follistatin, whose overproduction in mice lacking myostatin doubles the muscle-building effect. Results of the new study show that while mice that lack the gene that makes myostatin have roughly twice the amount of body muscle as normal, mice without myostatin that also overproduce follistatin have about four times as much muscle as normal mice.

Comparison of body and muscle size between normal mice (left) and double mutant mice lacking myostatin and overproducing follistatin (right.
Credit: Image courtesy of Johns Hopkins Medical Institutions

The Johns Hopkins scientist who first showed that the absence of the protein myostatin leads to oversized muscles in mice and men has now found a second protein, follistatin, whose overproduction in mice lacking myostatin doubles the muscle-building effect.

Related Articles


Results of the new study by Se-Jin Lee, M.D., Ph.D., in PloS One, show that while mice that lack the gene that makes myostatin have roughly twice the amount of body muscle as normal, mice without myostatin that also overproduce follistatin have about four times as much muscle as normal mice.

Lee, a professor of molecular biology and genetics, says this added muscle increase could significantly boost research efforts to “beef up” livestock or promote muscle growth in patients with muscular dystrophy and other wasting diseases.

Specifically, Lee first discovered that follistatin was capable of blocking myostatin activity in muscle cells grown under lab conditions. When he gave it to normal mice, the rodents bulked up, just as would happen if the myostatin gene in these animals was turned off.

He then genetically engineered a mouse that both lacked myostatin and made extra follistatin. If follistatin was increasing muscle growth solely by blocking myostatin, then Lee surmised that follistatin would have no added effect in the absence of myostatin.

“To my surprise and delight, there was an additive effect,” said Lee, who notes that these muscular mice averaged a 117 percent increase in muscle fiber size and a 73 percent increase in total muscle fibers compared to normal mice.

“These findings show that the capacity for increasing muscle growth by targeting these pathways is much more extensive than we have appreciated,” adds Lee. “Now we’ll search for other players that cooperate with myostatin so we can tap the full potential for enhancing muscle growth for clinical applications.”

Lee adds that this issue is of particular significance, as most agents targeting this pathway, including one drug being currently tested in a muscular dystrophy clinical trial, have been designed to block only myostatin and not other related proteins.

The research was funded by grants from the NIH and the Muscular Dystrophy Association and by a gift from Merck Research Laboratories.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "'Mighty Mice' Made Mightier." ScienceDaily. ScienceDaily, 29 August 2007. <www.sciencedaily.com/releases/2007/08/070828215611.htm>.
Johns Hopkins Medical Institutions. (2007, August 29). 'Mighty Mice' Made Mightier. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2007/08/070828215611.htm
Johns Hopkins Medical Institutions. "'Mighty Mice' Made Mightier." ScienceDaily. www.sciencedaily.com/releases/2007/08/070828215611.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Watch Baby Goose Survive A 400-Foot Cliff Dive

Watch Baby Goose Survive A 400-Foot Cliff Dive

Buzz60 (Oct. 31, 2014) For its nature series Life Story, the BBC profiled the barnacle goose, whose chicks must make a daredevil 400-foot cliff dive from their nests to find food. Jen Markham has the astonishing video. Video provided by Buzz60
Powered by NewsLook.com
World's Salamanders At Risk From Flesh-Eating Fungus

World's Salamanders At Risk From Flesh-Eating Fungus

Newsy (Oct. 31, 2014) The import of salamanders around the globe is thought to be contributing to the spread of a deadly fungus. Video provided by Newsy
Powered by NewsLook.com
Alcoholic Drinks In The E.U. Could Get Calorie Labels

Alcoholic Drinks In The E.U. Could Get Calorie Labels

Newsy (Oct. 31, 2014) A health group in the United Kingdom has called for mandatory calorie labels on alcoholic beverages in the European Union. Video provided by Newsy
Powered by NewsLook.com
Malaria Threat in Liberia as Fight Against Ebola Rages

Malaria Threat in Liberia as Fight Against Ebola Rages

AFP (Oct. 31, 2014) Focus on treating the Ebola epidemic in Liberia means that treatment for malaria, itself a killer, is hard to come by. MSF are now undertaking the mass distribution of antimalarials in Monrovia. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins