Featured Research

from universities, journals, and other organizations

Fruit Flies Prefer Fizzy Drinks

Date:
August 31, 2007
Source:
NIH/National Institute on Deafness and Other Communication Disorders
Summary:
That fruit fly hovering over your kitchen counter may be attracted to more than the bananas that are going brown; it may also want a sip of your carbonated water. Scientists have found that fruit flies detect and are attracted to the taste of carbonated water, such as water found on rotting fruits containing yeast. This finding raises the question of whether taste in humans may be more complex than scientists have thought.

The exposed brain of a fly with a superimposed image of fluorescently labeled taste neurons in the region called the subesophageal ganglion. The diagram at right shows how the three identified taste cells on the fly's proboscis -- sweet (green), bitter (red) and carbonated (blue) -- send their axons through the proboscis to the brain. The bright green spot in the brain on the left correspond to the red halo in the right photo.
Credit: Kristin Scott/UC Berkeley, courtesy of Neuron

That fruit fly hovering over your kitchen counter may be attracted to more than the bananas that are going brown; it may also want a sip of your carbonated water.

Fruit flies detect and are attracted to the taste of carbon dioxide dissolved in water, such as water found on rotting fruits containing yeast, concludes a study appearing in the August 30 issue of the journal Nature. Scientists at the University of California, Berkeley, who conducted the study, suggest that the ability to taste carbon dioxide may help a fruit fly scout for food that is nutritious over that which is too ripe and potentially toxic. The research is partly funded by the National Institute on Deafness and Other Communication Disorders (NIDCD), one of the National Institutes of Health.

"Fruit flies contain similar versions of many human genes, which is why we study them for a variety of health issues, including taste," says James F. Battey, Jr., M.D., Ph.D., director of the NIDCD. "This research raises the question of whether people also may have the ability to taste carbon dioxide and perhaps other chemicals in food. If this were found to be true, our sense of taste could be even more complex than we realize." Currently, scientists recognize five tastes in humans: sweet, salty, bitter, sour, and umami, or savory. Before today's findings, fruit flies were known to be able to taste sweet, bitter, and salty.

The researchers note that a fruit fly's attraction for the taste of carbon dioxide is on a much smaller scale than for sugar, so it may be used more as a possible flavor enhancer as opposed to a full-fledged taste. This makes sense, they say, since carbon dioxide offers no nutrition to the fly.

In humans, taste occurs by way of taste cells, sensory cells that are clustered in the taste buds of the mouth, tongue, and throat, and that express certain proteins, called receptors. These receptors are activated by specific chemicals--called tastants--found in foods and drinks. When a receptor is activated by a tastant, an electrical signal is generated, which travels to the brain.

Taste in the fruit fly, or Drosophila melanogaster, operates much the same way, except fruit flies have taste neurons instead of taste cells, and the taste neurons are found in structures called taste pegs and taste bristles instead of buds. Although taste pegs and bristles can be found all over a fruit fly's body, most are concentrated on the labellum--the equivalent of a tongue--which is housed in the proboscis, a long tubular structure originating from the fly's head.

To arrive at their findings, senior author Kristin Scott, Ph.D., and her research team made use of a powerful genetics technique that enables fruit fly researchers to tightly control which genes are expressed in a cell and which remain silent.

The team first homed in on a class of taste neurons, called E409, found on taste pegs in the fruit fly's labellum. These neurons had not been characterized before and were not already associated with known taste receptors for sweet and bitter. They then labeled the neurons with a fluorescent protein and found that their projections extended to separate parts of the taste area of the brain in comparison to the sweet and bitter neurons.

Next, the researchers tested the E409 neurons' response to an array of compounds and found that substances high in carbon dioxide, such as beer, yeast, and carbonated water, elicited heightened neuron activity as opposed to substances low in carbon dioxide.

Finally, they found that fruit flies were attracted to solutions with high carbon dioxide concentrations, while those whose E409 neurons were shut off were not.

Because fruit flies are also able to smell carbon dioxide, the team also wanted to learn if the two senses influenced one another. Under normal conditions, when fruit flies smell carbon dioxide in the air, they are repelled by it.

Scott and her team showed that fruit flies that had their E409 neurons shut off avoided high carbon dioxide concentrations in the environment; likewise, flies that were missing antennae, the structures they use to smell their surroundings, were attracted to solutions with high carbon dioxide concentrations. These results indicate that the senses of taste and smell operate independently. As a result, the team concluded that fruit flies use both senses of taste and smell separately to gauge their environment for a potential food source.

"Our model is that flies like high local concentrations of carbon dioxide," says Scott. "So if carbon dioxide is being produced by the yeast, flies taste it and they like it. But if there are increased global levels of carbon dioxide in the air--such as if a food source becomes spoiled and potentially toxic--then flies are repelled by it. So we think by having these two different carbon dioxide detectors, flies are able to compare global to local levels of carbon dioxide and then regulate their behavior accordingly."

The research is partly funded by the National Institute on Deafness and Other Communication Disorders (NIDCD), one of the National Institutes of Health. Other funding sources include a Burroughs Wellcome Fund Career Award, a McKnight Scholar Award, and a John Merck Award.


Story Source:

The above story is based on materials provided by NIH/National Institute on Deafness and Other Communication Disorders. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute on Deafness and Other Communication Disorders. "Fruit Flies Prefer Fizzy Drinks." ScienceDaily. ScienceDaily, 31 August 2007. <www.sciencedaily.com/releases/2007/08/070829143710.htm>.
NIH/National Institute on Deafness and Other Communication Disorders. (2007, August 31). Fruit Flies Prefer Fizzy Drinks. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2007/08/070829143710.htm
NIH/National Institute on Deafness and Other Communication Disorders. "Fruit Flies Prefer Fizzy Drinks." ScienceDaily. www.sciencedaily.com/releases/2007/08/070829143710.htm (accessed October 23, 2014).

Share This



More Mind & Brain News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Working Mother Getaway: Beaches Turks & Caicos

Working Mother Getaway: Beaches Turks & Caicos

Working Mother (Oct. 22, 2014) Feast your eyes on this gorgeous family-friendly resort. Video provided by Working Mother
Powered by NewsLook.com
What Your Favorite Color Says About You

What Your Favorite Color Says About You

Buzz60 (Oct. 22, 2014) We all have one color we love to wear, and believe it or not, your color preference may reveal some of your character traits. In celebration of National Color Day, Krystin Goodwin (@kyrstingoodwin) highlights what your favorite colors may say about you. Video provided by Buzz60
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins