Featured Research

from universities, journals, and other organizations

Chemists Get Grip On Slippery Lipids

Date:
August 31, 2007
Source:
University of Illinois at Chicago
Summary:
Findings on the structure and functions of two proteins that bind with lipids reveal new insight into cell signaling and trafficking mechanisms. The ability of the body's cells to correctly receive and convey signals is crucial to good health. Lipids, or fats, play a critical role in this regulation by providing spaces for proteins to gather and network. They are helped in this process by protein molecules called lipid binding domains. Understanding how these domains work may open up new targets of opportunity for drug development to treat illnesses such as cancer, diabetes and various inflammatory diseases.

The ability of the body's cells to correctly receive and convey signals is crucial to good health.

Lipids, or fats, play a critical role in this regulation by providing spaces for proteins to gather and network. They are helped in this process by protein molecules called lipid binding domains.

Understanding how these domains work may open up new targets of opportunity for drug development to treat illnesses such as cancer, diabetes and various inflammatory diseases.

Studying lipid binding domains is a specialty of Wonhwa Cho, distinguished professor of chemistry at the University of Illinois at Chicago. In two recently released papers appearing in the EMBO Journal and the Journal of Biological Chemistry, Cho and his associates describe mechanisms by which a particular binding domain -- the PX or "Phox" -- recognize specific lipids and interact with cell membranes to modulate functions.

"The PX domain can recognize and interact with a large number of lipid molecules and other proteins," said Cho. "We study how particular types of PX domains recognize specific lipids."

In the papers, Cho describes the structure and function PX domains from two proteins, KIF16B and Bem1p, which interact with a class of signaling lipids called phosphoinositides.

"KIF16B-PX domain is a critical component of the regulatory mechanism to modulate the duration of receptor-mediated cell signaling pathways," Cho said. "That's important because both prolonged and shortened signaling pathways will cause problems."

"Bem1p-PX domain is a yeast scaffold protein that's critical for cell polarity. It serves as an excellent model system to study how a scaffold protein goes to the cell membrane in response to a particular lipid signal, and then modulates multiple protein-protein interactions."

Cho's research group pioneered a novel biophysical approach to explain the complex mechanisms by which cellular lipid signals specifically and divergently activate a wide array of lipid binding domains and the proteins harboring these domains during various cellular processes.

"This research may help in development of new types of small molecules and drugs that specifically modulate the signaling and trafficking processes," Cho said. "For example, if a cellular malfunction is caused by over-activation of a particular lipid-mediated pathway, then we can turn off that pathway by developing a compound that interferes with the interaction of the lipid with its binding protein."

Cho's main collaborator in the studies was Roger Williams of the MRC Laboratory of Molecular Biology in Cambridge, England.


Story Source:

The above story is based on materials provided by University of Illinois at Chicago. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Chicago. "Chemists Get Grip On Slippery Lipids." ScienceDaily. ScienceDaily, 31 August 2007. <www.sciencedaily.com/releases/2007/08/070830150017.htm>.
University of Illinois at Chicago. (2007, August 31). Chemists Get Grip On Slippery Lipids. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2007/08/070830150017.htm
University of Illinois at Chicago. "Chemists Get Grip On Slippery Lipids." ScienceDaily. www.sciencedaily.com/releases/2007/08/070830150017.htm (accessed October 23, 2014).

Share This



More Plants & Animals News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Working Mother DIY: Pumpkin Pom-Pom

Working Mother DIY: Pumpkin Pom-Pom

Working Mother (Oct. 22, 2014) How to make a pumpkin pom-pom. Video provided by Working Mother
Powered by NewsLook.com
San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

Reuters - Light News Video Online (Oct. 22, 2014) The pair of rare white northern rhinos bring hope for their species as only six remain in the world. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
Raw: Bear Cub Strolls Through Oregon Drug Store

Raw: Bear Cub Strolls Through Oregon Drug Store

AP (Oct. 22, 2014) Shoppers at an Oregon drug store were surprised by a bear cub scurrying down the aisles this past weekend. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Family Pleads for Pet Pig to Stay at Home

Family Pleads for Pet Pig to Stay at Home

AP (Oct. 22, 2014) The Johnson family lost their battle with the Chesterfield County, Virginia Planning Commission to allow Tucker, their pet pig, to stay in their home, but refuse to let the board keep Tucker away. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins