Featured Research

from universities, journals, and other organizations

DNA Sequencing Becomes Much Quicker

Date:
October 16, 2007
Source:
Baylor College Of Medicine
Summary:
A new DNA sequencing process is simpler, more accurate and efficient than the multiplex PCR that was previously used to sequence portions of the genome. Microarrays are used to enrich or increase the volume of specific genomic sequences. Then high throughput DNA sequencing machines quickly determine the exact genetic code of the material.

A new technique that combines gene chip technology with the latest generation of gene sequencing machines to allow fast and accurate sequencing of selected parts of the genome has been developed by researchers from the Human Genome Sequencing Center at Baylor College of Medicine in Houston and NimbleGen Systems, Inc., a Wisconsin-based company recently purchased by Roche Applied Science.

"This new technology will replace polymerase chain reaction (PCR) for many purposes," said Dr. Richard Gibbs, director of the HGSC and senior author of the report. "If the aim is to sequence a whole genome for everybody, this is a huge step in that direction."

The report, which appears in Nature Methods, describes the use of microarrays to enrich or increase the volume of specific genomic sequences. High throughput DNA sequencing machines made by 454 Life Sciences then determine the exact genetic code of the material.

For example, if scientists were looking for a mutation in a particular cancer-causing gene (such as BRCA1 that is associated with breast and ovarian cancer), they could make a microarray that is complementary to the part of the genome in which one is interested. This takes advantage of the fact that the adenine (A) bases always attach to the thymine (T) and the cytosine (C) always attaches to the guanine (G) in reactions.

"You take the DNA and you hybridize it (allow the DNA to stick to its complement) on the chip," said Dr. George Weinstock, co-director of the HGSC. "Then you wash away everything that doesn't stick. This can enrich the portion of the genome to be studied by factors of three hundred or more."

The new process is simpler, more accurate and efficient than the multiplex PCR that was previously used to sequence portions of the genome. In one experiment, more than 6,400 exons (the part of the genetic code that carries the instructions for making proteins), were analyzed. Using the old technology this would have taken at least six months.

"We hope to be able to use this to sequence all the exons in the genome," Gibbs said.

Resequencing of genes or other genomic regions of interest is a key step in detecting mutations associated with various complex human diseases, such as cancer, asthma and heart disease. The predominant method for selection of specific genomic regions for resequencing has primarily relied on PCR (polymerase chain reaction) to enrich for specific DNA fragments.

However, PCR is limited in the length of sequence it can amplify, is difficult to scale or multiplex for the enrichment of thousands of fragments, and has limited performance in the repetitive regions typical of complex genomes, such as human. The sequence capture microarray technology bridges the gap between next-generation DNA sequencing technology and current sample preparation methods by providing an adaptable, massively parallel method for selective enrichment of genomic regions of interest. Roche NimbleGen's sequence capture technology enables high-performance targeting of thousands of specific genes or loci using a single microarray hybridization-based enrichment process.

The Nature Methods paper published by Baylor demonstrates that the sequence capture process is simpler, more accurate, more efficient and more cost-effective than the multiplex PCR that was previously used to prepare genomic samples for sequencing. In one experiment, more than 6,700 exons (the part of the genetic code that together form genes), were enriched and analyzed, as well as contiguous genomic regions of up to 5 million bases.

The study, entitled "Direct Selection of Human Genomic Loci by Microarray Hybridization," appears online (14 October 2007 ahead of print) in the journal Nature Methods.

The authors are Albert TJ, Molla MN, Muzny DM, Nazareth L, Wheeler D, Song X, Richmond TA, Middle CM, Rodesch MJ, Packard CJ, Weinstock GM, and Gibbs RA. (DOI:10.1038/NMETH1111)

Others who took part in this study include David Wheeler, Donna Muzny and Xingzhi Song of BCM and Thomas J. Albert, Michael N. Molla, Lynne Nazareth, Todd. A. Richmond, Chris M. Middle, Matthew J. Rodesch and Charles J. Packard of NimbleGen.

Funding for this work came from the U.S. National Human Genome Research Institute and the National Cancer Institute.


Story Source:

The above story is based on materials provided by Baylor College Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Baylor College Of Medicine. "DNA Sequencing Becomes Much Quicker." ScienceDaily. ScienceDaily, 16 October 2007. <www.sciencedaily.com/releases/2007/10/071015093528.htm>.
Baylor College Of Medicine. (2007, October 16). DNA Sequencing Becomes Much Quicker. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2007/10/071015093528.htm
Baylor College Of Medicine. "DNA Sequencing Becomes Much Quicker." ScienceDaily. www.sciencedaily.com/releases/2007/10/071015093528.htm (accessed July 26, 2014).

Share This




More Plants & Animals News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How to Make Single Serving Smoothies: Howdini Hacks

How to Make Single Serving Smoothies: Howdini Hacks

Howdini (July 24, 2014) Smoothies are a great way to get in lots of healthy ingredients, plus they taste great! Howdini has a trick for making the perfect single-size smoothie that will save you time on cleanup too! All you need is a blender and a mason jar. Video provided by Howdini
Powered by NewsLook.com
Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins