Featured Research

from universities, journals, and other organizations

Pheromones Identified That Trigger Aggression Between Male Mice

Date:
December 6, 2007
Source:
NIH/National Institute on Deafness and Other Communication Disorders
Summary:
This study is the first to identify protein pheromones responsible for the aggression response in male mice. The findings could provide a tool for understanding the neural pathways that play a role in human behavior.

A family of proteins commonly found in mouse urine is able to trigger fighting between male mice, a new study has found. The study is the first to identify protein pheromones responsible for the aggression response in mice. Pheromones are chemical cues that are released into the air, secreted from glands, or excreted in urine and picked up by animals of the same species, initiating various social and reproductive behaviors.

"Although the pheromones identified in this research are not produced by humans, the regions of the brain that are tied to behavior are the same for mice and people. Consequently, this research may one day contribute to our understanding of the neural pathways that play a role in human behavior," says James F. Battey, Jr., M.D., Ph.D., director of the NIDCD. "Much is known about how pheromones work in the insect world, but we know very little about how these chemicals can influence behavior in mammals and other vertebrates."

Researchers at Scripps Research Institute, La Jolla, Calif., and Harvard University chose to study aggression for this study because it is a strongly exhibited social behavior in male mice. Because mouse urine had already been linked to aggressive behavior in males, the team narrowed the field of pheromone candidates by separating out progressively smaller compounds in the urine and studying their effects on both mouse behavior and their ability to activate sensory receptor neurons in the vomeronasal organ.

The vomeronasal organ is one of two locations in the mouse's nasal cavity that houses sensory receptor cells that detect pheromones. The other location is the main olfactory epithelium, the part of the nasal cavity that also detects smells. Earlier research conducted by the group had determined that receptor neurons from the vomeronasal organ are required for the aggression response to occur.

To study behavior, the researchers swabbed the backs of neutered male mice with the various pheromone candidates and placed them in a cage with a normal male mouse. Neutered males are useful for the study of aggression because they can neither emit nor detect the aggression pheromones.

Whereas normal males will begin fighting as soon as they are placed together in a cage, neutered males remain docile around normal males, and vice versa. If a neutered male whose back has been swabbed with a pheromone candidate elicits hostility in a normal male, the researchers know that the pheromone candidate is responsible for the behavior.

Using a technique called calcium imaging, the team also studied whether pheromone candidates were able to directly activate sensory receptor neurons. Receptor neurons were removed from a mouse vomeronasal organ, spread out on a Petri dish, and labeled with a substance that changed color when the neuron was activated.

The researchers discovered that the protein family that comprises the major urinary protein (MUP) complex in mouse urine is one of two pheromones that can elicit the aggression response in male mice. They also found that the MUP protein is recognized exclusively in the vomeronasal organ, not in the main olfactory epithelium, and activates a specific type of sensory receptor neuron. A second pheromone was also found to elicit an aggression response in male mice, however further study needs to be done regarding its make-up and activity.

"There are about 20 members of the MUP family, and each mouse expresses four to six of the members randomly," explains senior investigator Lisa Stowers, Ph.D. "This creates a bar code of individuality for each mouse. And we don't know whether the proteins are actually coding for aggression per se, or whether they're serving as a general cue of individuality for a male."

If the latter is the case, it could help explain why, unlike the males, female mice don't show aggression when with a male. In addition to investigating this question further, the team plans to explore how receptor neurons sift through all of the cues in the environment to detect the relevant cues to influence behavior and how those sensory neurons are connected  to the rest of the brain. They also hope to learn more about the neural pathway itself—whether one pathway in the brain is dedicated to one behavior, or whether there are general pathways that can lead to a range of behaviors, which may be modulated by a specific pheromone.

This study was published in the Dec. 6, 2007, issue of Nature. The research was funded in part by the National Institute on Deafness and Other Communication Disorders (NIDCD), one of the National Institutes of Health. Other sponsors of this research include the Pew Charitable Trust, Skaggs Institute, Helen Dorris Foundation, and the Basque Government Post-Doctoral Research Fellowship.


Story Source:

The above story is based on materials provided by NIH/National Institute on Deafness and Other Communication Disorders. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute on Deafness and Other Communication Disorders. "Pheromones Identified That Trigger Aggression Between Male Mice." ScienceDaily. ScienceDaily, 6 December 2007. <www.sciencedaily.com/releases/2007/12/071205140115.htm>.
NIH/National Institute on Deafness and Other Communication Disorders. (2007, December 6). Pheromones Identified That Trigger Aggression Between Male Mice. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2007/12/071205140115.htm
NIH/National Institute on Deafness and Other Communication Disorders. "Pheromones Identified That Trigger Aggression Between Male Mice." ScienceDaily. www.sciencedaily.com/releases/2007/12/071205140115.htm (accessed October 22, 2014).

Share This



More Plants & Animals News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Reuters - US Online Video (Oct. 21, 2014) — Police in Gary, Indiana are using cadaver dogs to search for more victims after a suspected serial killer confessed to killing at least seven women. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
White Lion Cubs Unveiled to the Public

White Lion Cubs Unveiled to the Public

Reuters - Light News Video Online (Oct. 21, 2014) — Visitors to Belgrade zoo meet a pair of three-week-old lion cubs for the first time. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) — Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) — Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins