Featured Research

from universities, journals, and other organizations

Evolution Of The Sexes: What A Fungus Can Tell Us

Date:
January 10, 2008
Source:
Duke University Medical Center
Summary:
Fungi don't exactly come in boy and girl varieties, but they do have sex differences. In fact, a new finding shows that some of the earliest evolved forms of fungus contain clues to how the sexes evolved in higher animals, including that distant cousin of fungus, the human.

A pseudophore of the fungus Phycomyces blakesleeanus. Pseudophores are aberrant sexual structures produced in strains of this zygomycete fungus that contain both copies of the sex genes.
Credit: Image courtesy of Duke University Medical Center

Fungi don't exactly come in boy and girl varieties, but they do have sex differences. In fact, a new finding from Duke University Medical Center shows that some of the earliest evolved forms of fungus contain clues to how the sexes evolved in higher animals, including that distant cousin of fungus, the human.

A team lead by Joseph Heitman, M.D. has isolated sex-determining genes from one of the oldest known types of fungi, Phycomyces blakesleeanus, findings which appear in the Jan. 10 issue of Nature.

Fungi do not have entire sex chromosomes, like the familiar X and Y chromosomes that determine sexual identity in humans. Instead, they have sex determining sequences of DNA called "mating-type loci."

Mating-type loci have been found in a number of higher-level fungal species, and exhibit an unusual amount of diversity. These differences occur even among similar fungal species leading scientists to wonder how they evolved.

Heitman's group hypothesized that the sex-determining arrangement found in one of earliest forms of fungi might reveal the ancestral structure of mating-type loci, serving as a sort of molecular fossil.

"Fungi are good model systems for the evolution of human sexual differentiation because the genetic sequences responsible for sex are smaller versions of chromosomal sex-determining regions in people," Heitman said.

To identify the mating-type loci in Phycomyces, the researchers used a computer search to compare known mating-type loci in the genomes of other fungal lineages and then genetic mapping. "We employed a usual-suspects approach, comparing proteins between fungal types before identifying a candidate that appeared related in all lineages," says Heitman.

Within this stretch of DNA, they were able to isolate two versions of a gene that regulates mating, which they dubbed sexM, (sex minus) and sexP (sex plus). Strains of fungi with opposite versions of the sex genes are able to mate with each other.

Both versions of the gene, sexM and sexP, encode for a single protein called a high mobility group (HMG)-domain protein that leads to sex differentiation through an unknown process. This protein is very similar to one encoded by the human Y chromosome, called SRY, that when turned on leads a developing fetus to exhibit male characteristics. Heitman said this similarity suggests that HMG-domain proteins may mark the evolutionary beginnings of sex determination in both fungi and humans.

Heitman's team proposes that sexM and sexP were once the same gene that went through a mutation process called inversion. The new versions then evolved into two separate sex genes. The same process is most likely responsible for the evolution of the male Y chromosome, Heitman suggests.

Heitman hopes to next identify the sex region in another fungus, Rhizopus oryzae in order to better understand how HMG-domain proteins control sex determination in fungi. Rhizopus' genes can be cultured and chemically altered in a way that Phycomyces' sex genes can not.

"Rhizopus can be used to understand the influences of certain genes in lesser studied fungi much in the way we use mice to understand genetic effects in humans," explained Alexander Idnurm, Ph.D., the primary author on the study and recently appointed assistant professor at the University of Missouri-Kansas City.

Another troubling mystery for Heitman is that certain younger fungal species lack HMG-domain proteins. He proposes that these proteins have been replaced with alternative transcription factors, which are proteins that turn genes on and off.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Duke University Medical Center. "Evolution Of The Sexes: What A Fungus Can Tell Us." ScienceDaily. ScienceDaily, 10 January 2008. <www.sciencedaily.com/releases/2008/01/080109173726.htm>.
Duke University Medical Center. (2008, January 10). Evolution Of The Sexes: What A Fungus Can Tell Us. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2008/01/080109173726.htm
Duke University Medical Center. "Evolution Of The Sexes: What A Fungus Can Tell Us." ScienceDaily. www.sciencedaily.com/releases/2008/01/080109173726.htm (accessed August 21, 2014).

Share This




More Plants & Animals News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) — An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) — According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com
Lost Brain Cells To Blame For Sleep Problems Among Seniors

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Newsy (Aug. 21, 2014) — According to a new study, elderly people might have trouble sleeping because of the loss of a certain group of neurons in the brain. Video provided by Newsy
Powered by NewsLook.com
Ramen Health Risks: The Dark Side of the Noodle

Ramen Health Risks: The Dark Side of the Noodle

AP (Aug. 21, 2014) — South Koreans eat more instant ramen noodles per capita than anywhere else in the world. But American researchers say eating too much may increase the risk of diabetes, heart disease and stroke. (Aug. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins