Featured Research

from universities, journals, and other organizations

Environmental Epigenetics Has Potential For Preventing And Treating Disease

Date:
February 6, 2008
Source:
Blackwell Publishing Ltd.
Summary:
New research on environmental influences on health and disease has begun to shed light on why genetically identical individuals demonstrate different characteristics, such as susceptibility to disease. Scientists have found that environmental exposure to nutritional, chemical and physical factors can alter the epigenome. Literally meaning "above the genome," the epigenome refers to differences in gene expression that are inherited without changing the sequence of DNA.

New research on environmental influences on health and disease has begun to shed light on why genetically identical individuals demonstrate different characteristics, such as susceptibility to disease. Scientists have found that environmental exposure to nutritional, chemical and physical factors can alter the epigenome. Literally meaning “above the genome,” the epigenome refers to differences in gene expression that are inherited without changing the sequence of DNA.

New research* examines some of the epigenetic mechanisms linked to disease, and explores how they occur and their significance in understanding, treating and preventing disease.

Authors Randy L. Jirtle and Dana C. Dolinoy of Duke University Medical Center in Durham, North Carolina, discuss genomic imprinting, a form of gene regulation in which epigenetic modifications in chromosomes result in differences in gene expression. First identified in 1991, there are approximately 80 imprinted genes that have been identified in mice and humans. Because imprinted genes behave as if they have a single set of chromosomes rather than the usual two, the health consequences of mutations in these genes are potentially disastrous, resulting in diseases such as cancer and several severe pediatric developmental disorders.

In addition, mutations that occur in non-imprinted regions can influence the regulation of imprinted genes. The authors previously demonstrated that imprinting evolved anywhere from 230 to 150 million years ago, arising in mammals with the evolution of the placenta. They note that the expression of imprinted genes is species, tissue and developmental stage dependent and may play an important role in the speciation of mammals.

The article cites several studies involving metastable epialleles, which are alternate forms of a gene that are expressed due to epigenetic modifications linked to maternal nutrition and environmental exposure during very early development. The authors note that simple dietary changes were found to protect against the negative effects of environmental toxins on the fetal epigenome. They also cite evidence that embryos are vulnerable to environmentally-induced epigenetic alterations early in their development, highlighting the need to analyze the timing of exposure in order to fully understand environmental epigenomics.

The advent of bioinformatics has allowed researchers to more readily search the entire mouse genome for imprinted genes, but the real power of this approach has been recently demonstrated in its application to the human genome. While 2.5 percent of the mouse genome contains potentially imprinted genes, only 0.75 percent of the human genome is predicted to be imprinted. This means that the mouse genome may not be a suitable model for assessing human disease risk due to epigenetic mutations in imprinted genes. The authors point out the necessity of developing bioinformatic models that can identify metastable epialleles in order to characterize all of the genes susceptible to environmental influences.

With the identification of epigenetically unstable locations in the human genome, it will be possible to screen individuals at an early age for epigenetically susceptible diseases, allowing for closer monitoring and more frequent follow-up. In addition, unlike genetic mutation, epigenetic profiles are potentially reversible. “Therefore, epigenetic approaches for prevention and treatment, such as nutritional supplementation and/or pharmaceutical therapies may be developed to counteract negative epigenomic profiles,” the authors conclude. “The future of epigenomics therapy holds tremendous potential for not only individualized health care but also for population-wide disease diagnostic, screening, and prevention strategies.”

*Article: “Environmental Epigenomics in Human Health and Disease,” Dana C. Dolinoy and Randy L. Jirtle, Environmental and Molecular Mutagenesis, January 2008, 49:1.


Story Source:

The above story is based on materials provided by Blackwell Publishing Ltd.. Note: Materials may be edited for content and length.


Cite This Page:

Blackwell Publishing Ltd.. "Environmental Epigenetics Has Potential For Preventing And Treating Disease." ScienceDaily. ScienceDaily, 6 February 2008. <www.sciencedaily.com/releases/2008/01/080131151850.htm>.
Blackwell Publishing Ltd.. (2008, February 6). Environmental Epigenetics Has Potential For Preventing And Treating Disease. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2008/01/080131151850.htm
Blackwell Publishing Ltd.. "Environmental Epigenetics Has Potential For Preventing And Treating Disease." ScienceDaily. www.sciencedaily.com/releases/2008/01/080131151850.htm (accessed September 20, 2014).

Share This



More Plants & Animals News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chocolate Museum Opens in Brussels

Chocolate Museum Opens in Brussels

AFP (Sep. 19, 2014) Considered a "national heritage" in Belgium, chocolate now has a new museum in Brussels. In a former chocolate factory, visitors to the permanent exhibition spaces, workshops and tastings can discover derivatives of the cocoa bean. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com
Raw: Elephant Undergoes Surgery in Tbilisi Zoo

Raw: Elephant Undergoes Surgery in Tbilisi Zoo

AP (Sep. 18, 2014) Grand the elephant has successfully undergone surgery to remove a portion of infected tusk at Tbilisi Zoo in Georgia. British veterinary surgeons used an electric drill to extract the infected piece. (Sept. 18) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins