Featured Research

from universities, journals, and other organizations

Mysterious Bacterial Microcompartments Revealed By Biochemists

Date:
February 26, 2008
Source:
University of California - Los Angeles
Summary:
Biochemists have answered an important question about the structure of microcompartments -- mysterious molecular machines that seem to be present in a wide variety of pathogens and other bacteria. In the journal Science, the biochemists report how the structure closes, forming a shell around enzymes that are encased inside.

UCLA chemists are studying the structure of a protein shell called the carboxysome. The pentagons (shown in red) sit at the corners of the shell and are critical for causing an otherwise flat layer of hexagons to close.
Credit: Todd O. Yeates/UCLA Chemistry and Biochemistry

UCLA biochemists and colleagues have answered an important question about the structure of microcompartments -- the mysterious molecular machines that seem to be present in a wide variety of pathogens and other bacteria.

Related Articles


In the Feb. 22 issue of the journal Science, the biochemists report how the microcompartment structure closes in three dimensions, forming a shell around the enzymes encased inside.

If scientists could prevent or disrupt the formation of these microcompartments, they could probably render the bacteria harmless, said research co-author Todd O. Yeates, UCLA professor of chemistry and biochemistry and a member of the UCLA--Department of Energy Institute of Genomics and Proteomics. They do not yet know how to do this, but the current research may provide a framework for targeting microcompartments.

Yeates and his colleagues have identified the proteins that play the critical role in how the structure folds in the carboxysome, a protein shell that is the best-known and most-studied microcompartment. The shell has a structure like a soccer ball or the large, iconic dome structure at the Walt Disney World's Epcot Center.

"A soccer ball has hexagons and 12 pentagons at the corners; the pentagons are essential to close the structure," said Yeates, who is also a member of the California NanoSystems Institute at UCLA and UCLA's Molecular Biology Institute. "The Epcot Center at Walt Disney World has Spaceship Earth, a well-known dome structure composed of triangles that fit into hexagons, but on closer inspection you will find 12 locations where only five triangles come together; the same is true of the Buckminster Fuller-type domes in the desert and many viral structures.

"This principle of closing a structure by combining a large number of hexagons with a small number of pentagons to create a piece of curvature has been understood by architects, molecular biologists studying viruses and soccer ball manufacturers."

That principle is also understood by microcompartments, in which proteins form 12 pentagons to close the structure; fewer than 12 would not completely close it, said Yeates, who calls the proteins "pentameric carboxysome shell proteins."

The structure of the carboxysome shows a repeating pattern of six protein molecules packed closely together. The carboxysome has more than 3,000 sub-units with six edges and six vertices in a single shell, Yeates said.

In August 2005, Yeates and colleagues reported in the journal Science an underlying principle that governs the assembly of microcompartments: The proteins that form the outer shell form hexagons, which fit together to form extended two-dimensional molecular sheets. The researchers hypothesized that the molecular sheets formed by these hexagons formed the outer shell of the microcompartment and the tiny holes allowed small molecules to move in and out. Yeates and his colleagues have now answered how the shell closes in three dimensions.

Yeates is now studying other microcompartments that are of biomedical importance. Bacteria produce microcompartments when they infect a host, he said.

"We're learning about the kinds of strategies that bacteria have evolved to optimize the efficiency with which they operate or to deal with challenges they face," Yeates said. "In some cases, microcompartments are believed to serve a protective function, protecting the cell."

In the future, Yeates wants to learn how the shell comes to surround the enzymes, how microcompartments are formed and how microcompartments differ from one another. He is also interested in whether it is possible to create "designer microcompartments" that would encase other enzymes.

A key distinction separating the cells of primitive organisms like bacteria, known as prokaryotes, from the cells of complex organisms like humans is that complex, or eukaryotic, cells have a much higher level of sub-cellular organization.

Yeates' research blurs the distinction between eukaryotic cells and those of prokaryotes by showing that bacterial cells are more complex than scientists had imagined.

If microcompartments can be engineered, biotechnology applications could potentially arise from this research, Yeates said.

The research was federally funded by the U.S. Department of Energy.

Co-authors are Shiho Tanaka, a UCLA graduate student of biochemistry in Yeates' laboratory; Cheryl Kerfeld of the Joint Genome Institute; Michael Sawaya, a research scientist with UCLA and the Howard Hughes Medical Institute; and professors Gordon Cannon and Sabine Heinhorst and graduate student Fei Cai of the University of Southern Mississippi's department of chemistry and biochemistry.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Los Angeles. "Mysterious Bacterial Microcompartments Revealed By Biochemists." ScienceDaily. ScienceDaily, 26 February 2008. <www.sciencedaily.com/releases/2008/02/080221152009.htm>.
University of California - Los Angeles. (2008, February 26). Mysterious Bacterial Microcompartments Revealed By Biochemists. ScienceDaily. Retrieved February 27, 2015 from www.sciencedaily.com/releases/2008/02/080221152009.htm
University of California - Los Angeles. "Mysterious Bacterial Microcompartments Revealed By Biochemists." ScienceDaily. www.sciencedaily.com/releases/2008/02/080221152009.htm (accessed February 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, February 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Amazon Keeps Its Green Thanks To The Sahara Desert

The Amazon Keeps Its Green Thanks To The Sahara Desert

Newsy (Feb. 25, 2015) Satellite data shows the Amazon rainforest supports its lush flora with a little help from Sahara Desert dust. Video provided by Newsy
Powered by NewsLook.com
Mayor Says District of Columbia to Go Ahead With Pot Legalization

Mayor Says District of Columbia to Go Ahead With Pot Legalization

Reuters - News Video Online (Feb. 25, 2015) Washington&apos;s mayor says the District of Columbia will move forward with marijuana legalization, despite pushback from Congress. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Marijuana Nowhere Near As Deadly As Alcohol: Study

Marijuana Nowhere Near As Deadly As Alcohol: Study

Newsy (Feb. 25, 2015) A new study says marijuana is about 114 times less deadly than alcohol. Video provided by Newsy
Powered by NewsLook.com
Fox With Horrifying Injury Rescued and Released Back Into the Wild

Fox With Horrifying Injury Rescued and Released Back Into the Wild

RightThisMinute (Feb. 25, 2015) This wounded fox knew what she was doing when she wandered into the yard of a nature photographer. The photographer got "Scamp" immediately in the hands of Wildlife Aid and she was released back into the wild in no time. Video provided by RightThisMinute
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins