Featured Research

from universities, journals, and other organizations

Force Governs Function Of Proteins

Date:
March 12, 2008
Source:
ETH Zurich
Summary:
Today nanotechnology enables us to attract individual molecules mechanically, allowing their behavior when exposed to a mechanical force to be observed. With the aid of computer simulations, researchers can now illustrate how a particular scaffolding protein in the bonding between the extra-cellular matrix and the internal cytoskeleton can be activated by exerting force upon it.

Talin (blue) is an important scaffolding protein that binds the contractile cytoskeleton to the extra-cellular matrix via integrins. Its structure consists of a bundle of many tightly packed alpha helixes. If a cell sticks to a surface, thus exerting forces upon the scaffolding protein, the helix bundle breaks, exposing the helixes that can only bind vinculin after this "activation".
Credit: Image courtesy of ETH Zurich

Today nanotechnology enables us to attract individual molecules mechanically, allowing their behaviour when exposed to a mechanical force to be observed. With the aid of computer simulations, ETH Zurich researchers can now illustrate how a particular scaffolding protein in the bonding between the extra-cellular matrix and the internal cytoskeleton can be activated by exerting force upon it.

For a cell to survive, most eukaryotes have to be anchored to their surroundings mechanically. This is achieved by special proteins, the integrins, which cross the cell membrane. They are connected to the external periphery of the cell, the so-called extra-cellular matrix, and the cell interior, the cytoskeleton, by scaffolding proteins such as talin. Vesa Hytönen, a post-doc at the Laboratory for Biologically Oriented Materials at ETH Zurich, and Viola Vogel, Professor of Biologically Oriented Materials, also at ETH Zurich, have succeeded in revealing a mechanism as to how the scaffolding protein can recruit the protein vinculin when exposed to a force and bind with it. In a state of equilibrium, talin would not do this without force.

Water activates restructuring

The researchers can now demonstrate on an atomic scale how the structure of the scaffolding protein talin changes if force is exerted upon it using high-resolution computer simulations. Talin consists of several tightly packed helix bundles. If it is stretched mechanically, the bundles break into several smaller bundles that remain interconnected. Consequently, in the case of talin, vinculin binding sites located on hidden helixes are laid open. This happens when water molecules infiltrate the talin and moisten the hydrophobic sections of individual talin helixes.

As these helixes have an aversion to water, they try to hide their hydrophobic sections by forming complexes with other proteins – in this case, vinculin. Water thus activates the structural exchange of an entire talin helix, which is still bound like a washing line at the ends with talin but which structurally forms a complex with vinculin. According to Viola Vogel, vinculin’s complementary helix bundle structure makes this possible. Like talin, vinculin can then also connect to the cytoskeleton and thus mechanically reinforce the scaffolding between the interior and exterior.

“Previously, research primarily concentrated on the relationship between the structure and function of proteins that are in equilibrium with their surroundings”, explains Viola Vogel. For the last few decades, as nanotechnology established itself and began to be researched in billionths of a meter, it has been possible to investigate the mechanical properties of proteins and pursue the question as to how mechanical forces govern the way the proteins work.

New field of research

Vogel states that the new computerized results explain all previous laboratory experiments. Today, we only know how very few proteins are altered biochemically or even activated and deactivated by mechanical forces. The fact that proteins can be activated by mechanical forces by exchanging a helix, however, is still something special. According to Vogel, there is still a lot of work to be done in this new field of research. In future, these results might be used in biotechnology or medicine.

Journal eference: Hytönen, V. & Vogel, V.: How Force Might Activate Talin’s Vinculin Binding Sites: SMD Reveals a Structural Mechanism, PLoS Computational Biology 4 (2008), doi:10.1371/journal.pcbi.0040024

 


Story Source:

The above story is based on materials provided by ETH Zurich. Note: Materials may be edited for content and length.


Cite This Page:

ETH Zurich. "Force Governs Function Of Proteins." ScienceDaily. ScienceDaily, 12 March 2008. <www.sciencedaily.com/releases/2008/03/080307102046.htm>.
ETH Zurich. (2008, March 12). Force Governs Function Of Proteins. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2008/03/080307102046.htm
ETH Zurich. "Force Governs Function Of Proteins." ScienceDaily. www.sciencedaily.com/releases/2008/03/080307102046.htm (accessed April 24, 2014).

Share This



More Matter & Energy News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Next Stop America for France's TGV?

Next Stop America for France's TGV?

Reuters - Business Video Online (Apr. 24, 2014) — General Electric keeps quiet on reports it's in talks to buy French turbine and train maker Alstom. Ivor Bennett reports on what could be an embarrassing rumour for the French government, with business-friendly reforms proving a hard sell. Video provided by Reuters
Powered by NewsLook.com
Raw: Obama Plays Soccer With Japanese Robot

Raw: Obama Plays Soccer With Japanese Robot

AP (Apr. 24, 2014) — President Obama briefly played soccer with a robot during his visit to Japan on Thursday. The President has been emphasizing technology along with security concerns during his visit. (April 24) Video provided by AP
Powered by NewsLook.com
Obama Encourages Japanese Student-Scientists

Obama Encourages Japanese Student-Scientists

AP (Apr. 24, 2014) — President Obama spoke with student innovators in Japan and urged them to take part in increased opportunities for student exchanges with the US. (April 24) Video provided by AP
Powered by NewsLook.com
UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) — The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins