Featured Research

from universities, journals, and other organizations

Lyme Disease Spirochetes Tracked in 3D

Date:
June 24, 2008
Source:
Public Library of Science
Summary:
Microbiologists have demonstrated the first direct visualization of the dissemination of Borrelia burgdorferi, the bacterium that causes Lyme disease. This real-time, three-dimensional look at spirochete dissemination in a living mammalian host.

B) Phase contrast and epifluorescent visualization of spirochetes cultured from mouse ears. Ear punches obtained from infected C3H/HeN mice 13 days after inoculation were cultured in BSK-II medium in the absence of gentamycin selection before visualization. C) Visualization of live fluorescent B. burgdorferi in a living mouse ear by spinning disk confocal IVM. The spirochetes, indicated by yellow arrows, were observed four weeks after intraperitoneal inoculation of a C57 BL/6 mouse. Blood vessels were visualized by jugular vein injection of FITC-labeled albumin. Video footage of fluorescent B. burgdorferi moving in the ear of a living C57 mouse is presented in Video S1.
Credit: Moriarty et al., PLoS Pathog, 4(6): e1000090 DOI: 10.1371/journal.ppat.1000090

Microbiologists at the University of Calgary have demonstrated the first direct visualization of the dissemination of Borrelia burgdorferi, the bacterium that causes Lyme disease. This real-time, three-dimensional look at spirochete dissemination in a living mammalian host.

Related Articles


Pathogenic spirochetes are a group of bacteria that cause a number of emerging and re-emerging diseases worldwide, including syphilis, leptospirosis, relapsing fever, and Lyme disease. The mechanism by which they disseminate from the blood to target sites is unknown. Direct visualization of these bacteria may yield critical insight into resultant disease processes.

The team therefore set out to directly observe these bacteria at the single-cell level in a living host, using an engineered fluorescent strain of B. burgdorferi as an example bacterium. Using conventional and spinning disk confocal microscopy, the investigators were able to track the movement of the bacteria and the interaction of the bacteria with the vascular wall in mice. They found that vascular escape is a multi-stage process and that spirochete movement appears to play an integral role in dissemination from the blood to target tissue sites.

This use of high-resolution, 3D imaging to visualize the dissemination of a bacterial pathogen in vivo lays the groundwork for a better understanding of the mechanisms by which these and other bacteria disseminate throughout the body to cause disease.


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Moriarty TJ, Norman MU, Colarusso P, Bankhead T, Kubes P, et al. Real-Time High Resolution 3D Imaging of the Lyme Disease Spirochete Adhering to and Escaping from the Vasculature of a Living Host. PLoS Pathog, 4(6): e1000090 DOI: 10.1371/journal.ppat.1000090

Cite This Page:

Public Library of Science. "Lyme Disease Spirochetes Tracked in 3D." ScienceDaily. ScienceDaily, 24 June 2008. <www.sciencedaily.com/releases/2008/06/080619203259.htm>.
Public Library of Science. (2008, June 24). Lyme Disease Spirochetes Tracked in 3D. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2008/06/080619203259.htm
Public Library of Science. "Lyme Disease Spirochetes Tracked in 3D." ScienceDaily. www.sciencedaily.com/releases/2008/06/080619203259.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins