Featured Research

from universities, journals, and other organizations

New RNA Processing Mechanism And New Class Of Small RNAs

Date:
December 2, 2008
Source:
Cold Spring Harbor Laboratory
Summary:
Scientists report their discoveries of a previously unknown mechanism in the nucleus that processes non-coding RNA molecules to generate what might be a new class of small RNAs.

A very small fraction of our genetic material--about 2%-- performs the crucial task scientists once thought was the sole purpose of the genome: to serve as a blueprint for the production of proteins, the molecules that make cells work and sustain life. This 2% of human DNA is converted into intermediary molecules called RNAs, which in turn carry instructions within cells for protein manufacture.

Related Articles


And what of the other 98% of the genome? It has been assumed by many to be genetic junk, a massive accumulation of "code" that evolution has rendered superfluous. Now, however, scientists are discovering that the vast bulk of the DNA in our genomes, while it does not "code" for the specific RNA molecules that serve as templates for protein synthesis, do nevertheless perform various kinds of work. But what types of work, involving what kinds of cellular mechanisms? Given its relative abundance, non-coding DNA and RNA present inviting targets for experimentation.

For years, a laboratory at Cold Spring Harbor Laboratory (CSHL) led by Professor David L. Spector, Ph.D., has studied events within the cell nucleus, where the genetic material is contained. In the November 26th issue of Cell, Spector and a team led by graduate student Jeremy Wilusz report their discovery of a previously unknown mechanism in the nucleus that processes non-coding RNA molecules.

Spector and colleagues discovered the mechanism while examining a non-coding RNA molecule called MALAT1. Resident in the cell nucleus, MALAT1 was observed to split into two parts, one long and one very short—the latter qualifying as a species of RNA that scientists call small RNAs. The small RNA segment was observed to migrate out of the nucleus into the cell's aqueous cytoplasm. The longer remnant of MALAT1 remained in the nucleus, accumulating in distinct zones called nuclear speckles.

Although it is not yet clear what these processed parts of the original MALAT1 molecule do, their disparate destinations in the cell suggest that they likely serve different functions. And that, Dr. Spector says, is intriguing in part because MALAT1 is known to be a good marker of cancer progression: it is found at abnormally high levels in the nuclei of cancer cells with a propensity to become metastatic.

One new RNA molecule; more to come?

The discovery of the cytoplasmic small RNA fragment of the non-coding MALAT1 molecule, which the CSHL team calls mascRNA, (MALAT1-associated small cytoplasmic RNA) is "just the tip of the iceberg of a whole new class of small RNAs," according to Spector.

This new kid on the small RNA block was found by Spector's lab to be present in most cell types, and is highly conserved, or retained by evolution across many species. In the growing menagerie of small RNA molecules, mascRNA is processed and assumes a physical shape much like that of transfer RNA, or tRNA, an RNA string that folds into a cloverleaf-shaped structure.

tRNA molecules are part of the construction crew that builds proteins; they carry amino acids--the building blocks of proteins-- to protein chains as they are being assembled. But the CSHL team's results suggest that mascRNA, which is smaller than most tRNAs, does not likely perform this function. Yet mascRNA's location in the cell's cytoplasm and its pathway of biogenesis does hint at a possible function. Spector suspects it may act as a "sponge" for proteins, preventing them from reaching their natural destinations within the cell. Another possibility is that mascRNA simply serves to alert the cell that the long non-coding RNA fragment that it originally split off from-- MALAT1--is "available" in the nucleus for other cellular duties.

Broader implications: a new RNA processing mechanism

Researchers now think that at least 40% of long, non-coding RNAs--a considerable chunk of RNA segments that float around the nucleus--may be processed to generate smaller RNA pieces such as mascRNA, and also other classes of RNA. While the hunt has begun for other tRNA-like small RNAs and their precursor RNAs like MALAT1, the new results from Spector's lab provide a first look at how these bits are produced.

In the case of coding RNAs, once their sequence has been "read" off a DNA template, a molecular complex snips off the tail end of this new piece and tacks on a signal at its end that protects the new molecule from degradation and marks it for export out of the nucleus. In non-coding MALAT1, however, the CSHL team found the protective signal was already embedded within the molecule, just ahead of the portion that later detached to form mascRNA. The molecular complex responsible for cleaving MALAT1 therefore knew precisely where to make its cut--right after the embedded signal--rather than at MALAT1's tail end. In this way, MALAT1 is effectively preconfigured to liberate the mascRNA fragment.

The mechanism that retains the long MALAT1 molecule within the nucleus while expelling the mascRNA fragment into the cytoplasm is still elusive. "The answer will come when we identify more and more RNAs that are built like the MALAT1 precursor and are processed to give rise to different types of RNAs," says Spector.

In the meantime, his lab's current work provides reason to believe that the community of non-coding RNAs has many more surprises to reveal. To the extent that its members can be shown to perform specific functions, it will seem increasingly inapt to consider non-coding RNAs the byproducts of "junk DNA."


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jeremy E. Wilusz, Susan M. Freier, and David L. Spector. 3' end processing of a long nuclear-retained non-coding RNA yields a tRNA-like cytoplasmic RNA. Cell, November 26, 2008

Cite This Page:

Cold Spring Harbor Laboratory. "New RNA Processing Mechanism And New Class Of Small RNAs." ScienceDaily. ScienceDaily, 2 December 2008. <www.sciencedaily.com/releases/2008/11/081126133302.htm>.
Cold Spring Harbor Laboratory. (2008, December 2). New RNA Processing Mechanism And New Class Of Small RNAs. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2008/11/081126133302.htm
Cold Spring Harbor Laboratory. "New RNA Processing Mechanism And New Class Of Small RNAs." ScienceDaily. www.sciencedaily.com/releases/2008/11/081126133302.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins