Featured Research

from universities, journals, and other organizations

Mathematical Model Gives Clearer Picture Of Physics Of Cells, Organelles

Date:
December 15, 2008
Source:
University of California - Los Angeles
Summary:
Cells are filled with membrane-bound organelles like the nucleus, mitochondria and endoplasmic reticula. Over the years, scientists have made much progress in understanding the biomolecular details of how these organelles function within cells, but understanding the actual physical forces that maintain the structures of these organelles' membranes continues to be a challenge. Mathematicians have recently devised a new mathematical procedure for accurately predicting the 3-D forces involved in creating and maintaining certain organelle membrane structures that could one day shed light on the lifecycle of membrane-bound viruses such as HIV.

Cells are filled with membrane-bound organelles like the nucleus, mitochondria and endoplasmic reticula. Over the years, scientists have made much progress in understanding the biomolecular details of how these organelles function within cells, but understanding the actual physical forces that maintain the structures of these organelles' membranes continues to be a challenge.

Now, UCLA Henry Samueli School of Engineering and Applied Science researcher William Klug and colleagues from the California Institute of Technology and the Whitehead Institute for Biomedical Research in Massachusetts have devised a mathematical procedure for accurately predicting the three-dimensional forces involved in creating and maintaining certain organelle membranes.

Their study, which appears Dec. 8 in Proceedings of the National Academy of Sciences and is currently available online, could potentially shed light on the life cycles of membrane-bound viruses such as HIV.

"The study is exciting because it provides a roadmap for ways we can do predictive computational science," said Klug, an assistant professor of mechanical and aerospace engineering. "The mathematical model is able to provide us with a quantitative understanding of the physics of cells that is essentially impossible to obtain directly by experiment."

To understand the researchers' mathematical description of how forces can lead to deformations in a membrane, one can consider the simple concept of a bathroom scale.

"When you step on a scale, a small spring in the scale defines how heavy you are or what force is being applied to the scale," said study co-author Paul Wiggins, a fellow at the Whitehead Institute. "Similarly, with membranes, springs or forces cause them to bend. In a sense, we wanted to see if we could play the same game with the organelles of a cell — to take the observed structure and see if we can predict what forces are applied to give rise to the structure and essentially hold the structure together."

The team used an artificial biomembrane to investigate the dynamic forces that act on a cell's membrane and organelles. With optical tweezers — a scientific instrument that uses a focused laser beam to provide an attractive or repulsive force — they were able to trap and move parts of the cell. This enabled the researchers to exert known forces in different ways, giving them an opportunity to analyze both the response of the membranes when their structures were changed dramatically and to validate their mathematical procedure for predicting forces based on the deformed shapes of the membranes.

"We have this geometry, so what are the forces?" said Klug. "It seems straightforward if you write it out mathematically but in practice, actually measuring the forces reliably where you can quantify the error is really tricky."

The researchers believe that understanding the forces and mechanisms that are responsible for maintaining the geometries of the organelles will help them uncover the crucial factors that lead to changes or malfunctions in organelles.

"When cells undergo oxygen damage, that usually leads to a change in the structure of the mitochondria — the specialized organelles often referred to as the powerhouses of cells," Wiggins said. "There is a close link between the ability of the mitochondria to function and its structure. By relating structure to force, we can uncover the crucial factors that lead to the change in the structure of the mitochondria and other organelles as well."

Membrane-bound viruses like HIV infect cells and then replicate and break from the cells by budding. This budding process eventually uses up the cell membrane and kills it.

"The forces that lead to the process of budding are essentially unknown," Klug said. "Researchers have looked at the image data of HIV in different stages of budding to try to understand the forces that lead up to it. If we can eventually understand what those forces are, we might be able to come up with a way to disrupt the viral assembly process. And that's a different strategy than what is being done today to treat retroviruses and HIV in particular."


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Los Angeles. "Mathematical Model Gives Clearer Picture Of Physics Of Cells, Organelles." ScienceDaily. ScienceDaily, 15 December 2008. <www.sciencedaily.com/releases/2008/12/081208180508.htm>.
University of California - Los Angeles. (2008, December 15). Mathematical Model Gives Clearer Picture Of Physics Of Cells, Organelles. ScienceDaily. Retrieved April 25, 2014 from www.sciencedaily.com/releases/2008/12/081208180508.htm
University of California - Los Angeles. "Mathematical Model Gives Clearer Picture Of Physics Of Cells, Organelles." ScienceDaily. www.sciencedaily.com/releases/2008/12/081208180508.htm (accessed April 25, 2014).

Share This



More Plants & Animals News

Friday, April 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
Blood From World's Oldest Woman Suggests Life Limit

Blood From World's Oldest Woman Suggests Life Limit

Newsy (Apr. 24, 2014) Scientists say for the extremely elderly, their stem cells might reach a state of exhaustion. This could limit one's life span. Video provided by Newsy
Powered by NewsLook.com
Raw: Kangaroo Rescued from Swimming Pool

Raw: Kangaroo Rescued from Swimming Pool

AP (Apr. 24, 2014) A kangaroo was saved from drowning in a backyard suburban swimming pool in Australia's Victoria state on Thursday. Australian broadcaster Channel 7 showed footage of the kangaroo struggling to get out of the pool. (April 24) Video provided by AP
Powered by NewsLook.com
Could Marijuana Use Lead To Serious Heart Problems?

Could Marijuana Use Lead To Serious Heart Problems?

Newsy (Apr. 24, 2014) A new study says marijuana use could lead to serious heart-related complications. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins